一、插入排序

 #-*- coding:utf-8 -*-
'''
描述
插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为O(n^2)。
是稳定的排序方法。插入算法把要排序的数组分成两部分:第一部分包含了这个数组的所有元素,但将最后一个元素除外(让数组多一个空间才有插入的位置),
而第二部分就只包含这一个元素(即待插入元素)。在第一部分排序完成后,再将这个最后元素插入到已排好序的第一部分中
'''
def insert_sort(lists):
count = len(lists)
for i in range(1, count):
key = lists[i]
j = i - 1
while j >= 0:
if lists[j] > key:
lists[j + 1] = lists[j]
lists[j] = key
j -= 1
return lists lst1 = raw_input().split()
lst = [int(i) for i in lst1]
#lst = input()
insert_sort(lst)
for i in range(len(lst)):
print lst[i],

二、希尔排序

 #-*- coding:utf8 -*-
'''
描述
希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。
该方法因DL.Shell于1959年提出而得名。 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,
每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。
'''
def shell_sort(lists):
count = len(lists)
step = 2
group = count / step
while group > 0:
for i in range(group):
j = i + group
while j < count:
k = j - group
key = lists[j]
while k >= 0:
if lists[k] > key:
lists[k + group] = lists[k]
lists[k] = key
k -= group
j += group
group /= step
return lists lst1 = raw_input().split()
lst = [int(i) for i in lst1]
#lst = input()
shell_sort(lst)
for i in range(len(lst)):
print lst[i],

三、冒泡排序

 #-*- coding:utf8 -*-
'''
描述
它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。
走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
'''
def bubble_sort(lists):
count = len(lists)
for i in range(count):
for j in range(i + 1, count):
if lists[i] > lists[j]:
lists[i], lists[j] = lists[j], lists[i]
return lists lst1 = raw_input().split()
lst = [int(i) for i in lst1]
#lst = input()
bubble_sort(lst)
for i in range(len(lst)):
print lst[i],

四、直接选择排序

 #-*- coding:utf8 -*-
'''
描述
基本思想:第1趟,在待排序记录r1 ~ r[n]中选出最小的记录,将它与r1交换;第2趟,在待排序记录r2 ~ r[n]中选出最小的记录,将它与r2交换;
以此类推,第i趟在待排序记录r[i] ~ r[n]中选出最小的记录,将它与r[i]交换,使有序序列不断增长直到全部排序完毕。
'''
def select_sort(lists):
count = len(lists)
for i in range(count):
min = i
for j in range(i + 1, count):
if lists[min] > lists[j]:
min = j
lists[min], lists[i] = lists[i], lists[min]
return lists lst1 = raw_input().split()
lst = [int(i) for i in lst1]
#lst = input()
select_sort(lst)
for i in range(len(lst)):
print lst[i],

五、快速排序

 #-*- coding:utf8 -*-
'''
描述(利用递归,效率较低,较难理解)
通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,
然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
'''
def quick_sort(lists, left, right):
if left >= right:
return lists
key = lists[left]
low = left
high = right
while left < right:
while left < right and lists[right] >= key:
right -= 1
lists[left] = lists[right]
while left < right and lists[left] <= key:
left += 1
lists[right] = lists[left]
lists[right] = key
quick_sort(lists, low, left - 1)
quick_sort(lists, left + 1, high)
return lists lst1 = raw_input().split()
lst = [int(i) for i in lst1]
#lst = input()
quick_sort(lst,0,len(lst)-1)
for i in range(len(lst)):
print lst[i],

六、堆排序

 #-*- coding:utf8 -*-
'''
描述(较难理解)
堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。可以利用数组的特点快速定位指定索引的元素。
堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即A[PARENT[i]] >= A[i]。
在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。
'''
# 调整堆
def adjust_heap(lists, i, size):
lchild = 2 * i + 1
rchild = 2 * i + 2
max = i
if i < size / 2:
if lchild < size and lists[lchild] > lists[max]:
max = lchild
if rchild < size and lists[rchild] > lists[max]:
max = rchild
if max != i:
lists[max], lists[i] = lists[i], lists[max]
adjust_heap(lists, max, size) # 创建堆
def build_heap(lists, size):
for i in range(0, (size/2))[::-1]:
adjust_heap(lists, i, size) # 堆排序
def heap_sort(lists):
size = len(lists)
build_heap(lists, size)
for i in range(0, size)[::-1]:
lists[0], lists[i] = lists[i], lists[0]
adjust_heap(lists, 0, i) lst1 = raw_input().split()
lst = [int(i) for i in lst1]
#lst = input()
heap_sort(lst)
for i in range(len(lst)):
print lst[i],

七、归并排序

 #-*- coding:utf8 -*-
'''
描述(利用递归)
归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;
即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。
归并过程为:比较a[i]和a[j]的大小,若a[i]≤a[j],则将第一个有序表中的元素a[i]复制到r[k]中,并令i和k分别加上1;否则将第二个有序表中的元素a[j]复制到r[k]中,
并令j和k分别加上1,如此循环下去,直到其中一个有序表取完,然后再将另一个有序表中剩余的元素复制到r中从下标k到下标t的单元。归并排序的算法我们通常用递归实现,
先把待排序区间[s,t]以中点二分,接着把左边子区间排序,再把右边子区间排序,最后把左区间和右区间用一次归并操作合并成有序的区间[s,t]。
'''
def merge(left, right):
#合并过程
i, j = 0, 0
result = []
while i < len(left) and j < len(right):
if left[i] <= right[j]:
result.append(left[i])
i += 1
else:
result.append(right[j])
j += 1
result.extend(left[i:])
result.extend(right[j:])
return result def merge_sort(lists):
if len(lists) <= 1:
return lists
mid = len(lists) / 2
left = merge_sort(lists[:mid])
right = merge_sort(lists[mid:])
return merge(left, right) lst1 = raw_input().split()
lst = [int(i) for i in lst1]
#lst = input()
tt = merge_sort(lst)
for i in range(len(tt)):
print tt[i],

八、基数排序

 #-*- coding:utf8 -*-
'''
描述(表示没接触过,第一次听说)
基数排序(radix sort)属于“分配式排序”(distribution sort),又称“桶子法”(bucket sort)或bin sort,顾名思义,它是透过键值的部份资讯,
将要排序的元素分配至某些“桶”中,藉以达到排序的作用,基数排序法是属于稳定性的排序,其时间复杂度为O (nlog(r)m),
其中r为所采取的基数,而m为堆数,在某些时候,基数排序法的效率高于其它的稳定性排序法。
'''
import math
def radix_sort(lists, radix=10):
k = int(math.ceil(math.log(max(lists), radix)))
bucket = [[] for i in range(radix)]
for i in range(1, k+1):
for j in lists:
bucket[j/(radix**(i-1)) % (radix**i)].append(j)
del lists[:]
for z in bucket:
lists += z
del z[:]
return lists lst1 = raw_input().split()
lst = [int(i) for i in lst1]
#lst = input()
radix_sort(lst)
for i in range(len(lst)):
print lst[i],

下面附一下各个排序算法的时间复杂度以及稳定性比较:

平均速度最快的排序算法是?
排序方法        平均情况        最好情况        最坏情况        辅助空间        稳定性
冒泡排序        O(n^2)         O(n)             O(n^2)           O(1)           稳定
选择排序        O(n^2)         O(n^2)         O(n^2)           O(1)          不稳定
插入排序        O(n^2)         O(n)             O(n^2)           O(1)           稳定
希尔排序O(n*log(n))~O(n^2) O(n^1.3)     O(n^2)           O(1)          不稳定
堆排序         O(n*log(n))    O(n*log(n))    O(n*log(n))     O(1)           不稳定
归并排序      O(n*log(n))    O(n*log(n))    O(n*log(n))     O(n)             稳定
快速排序      O(n*log(n))    O(n*log(n))    O(n^2)           O(1)           不稳定
 
冒泡排序经过优化以后,最好时间复杂度可以达到O(n)。设置一个标志位,如果有一趟比较中没有发生任何交换,可提前结束,因此在正序情况下,时间复杂度为O(n)。选择排序在最坏和最好情况下,都必须在剩余的序列中选择最小(大)的数,与已排好序的序列后一个位置元素做交换,依次最好和最坏时间复杂度均为O(n^2)。插入排序是在把已排好序的序列的后一个元素插入到前面已排好序(需要选择合适的位置)的序列中,在正序情况下时间复杂度为O(n)。堆是完全二叉树,因此树的深度一定是log(n)+1,最好和最坏时间复杂度均为O(n*log(n))。归并排序是将大数组分为两个小数组,依次递归,相当于二叉树,深度为log(n)+1,因此最好和最坏时间复杂度都是O(n*log(n))。快速排序在正序或逆序情况下,每次划分只得到比上一次划分少一个记录的子序列,用递归树画出来,是一棵斜树,此时需要n-1次递归,且第i次划分要经过n-i次关键字比较才能找到第i个记录,因此时间复杂度是\sum_{i=1}^{n-1}(n-i)=n(n-1)/2,即O(n^2)。

python之八大排序方法的更多相关文章

  1. 八大排序方法汇总(选择排序,插入排序-简单插入排序、shell排序,交换排序-冒泡排序、快速排序、堆排序,归并排序,计数排序)

    2013-08-22 14:55:33 八大排序方法汇总(选择排序-简单选择排序.堆排序,插入排序-简单插入排序.shell排序,交换排序-冒泡排序.快速排序,归并排序,计数排序). 插入排序还可以和 ...

  2. Python实现八大排序算法(转载)+ 桶排序(原创)

    插入排序 核心思想 代码实现 希尔排序 核心思想 代码实现 冒泡排序 核心思想 代码实现 快速排序 核心思想 代码实现 直接选择排序 核心思想 代码实现 堆排序 核心思想 代码实现 归并排序 核心思想 ...

  3. Python实现八大排序(基数排序、归并排序、堆排序、简单选择排序、直接插入排序、希尔排序、快速排序、冒泡排序)

    目录 八大排序 基数排序 归并排序 堆排序 简单选择排序 直接插入排序 希尔排序 快速排序 冒泡排序 时间测试 八大排序 大概了解了一下八大排序,发现排序方法的难易程度相差很多,相应的,他们计算同一列 ...

  4. python基础===八大排序算法的 Python 实现

    本文用Python实现了插入排序.希尔排序.冒泡排序.快速排序.直接选择排序.堆排序.归并排序.基数排序. 1.插入排序 描述 插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一 ...

  5. python实现八大排序算法

    插入排序 核心思想 插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的.个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为 O(n^2).是稳定的排序方法.插入算法 ...

  6. Python中的排序方法sort(),sorted(),argsort()等

    python 列表排序方法sort.sorted技巧篇 转自https://www.cnblogs.com/whaben/p/6495702.html,学习参考. Python list内置sort( ...

  7. 【Python】八大排序算法的比较

    排序是数据处理比较核心的操作,八大排序算法分别是:直接插入排序.希尔排序.简单选择排序.堆排序.冒泡排序.快速排序.归并排序.基数排序 以下是排序图解: 直接插入排序 思想 直接插入排序是一种最简单的 ...

  8. Python中经典排序方法

    数据的排序是在解决实际问题时经常用到的步骤,也是数据结构的考点之一,下面介绍10种经典的排序方法. 首先,排序方法可以大体分为插入排序.选择排序.交换排序.归并排序和桶排序四大类,其中,插入排序又分为 ...

  9. python 两种排序方法 sort() sorted()

    python中有两种排序方法,list内置sort()方法或者python内置的全局sorted()方法 区别为: sort()方法对list排序会修改list本身,不会返回新list.sort()只 ...

随机推荐

  1. 当因式分解遇见近邻:一种多层面协同过滤模型(SVD++)

    本文地址:https://www.cnblogs.com/kyxfx/articles/9392086.html actorization Meets the Neighborhood: a Mult ...

  2. android:保存用户名密码等应用程序数据

    转自http://blog.sina.com.cn/s/blog_a73687bc0101dsjj.html (一)使用SharedPreferences  1.保存信息: SharedPrefere ...

  3. JS设置cookie,读取cookie,删除cookie

    总结了一下cookie的使用,不全面.都是基础的知识,后期还会再添加. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitiona ...

  4. hdu 2527 Safe Or Unsafe (哈夫曼树)

    Safe Or Unsafe Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  5. ns统计使用资源的SNMP OID

    ns统计使用资源的SNMP OID > add snmp manager 192.168.195.1 > add snmp community public ALL > add sn ...

  6. Java操作Redis存储对象类型数据

    背景描述      关于JAVA去操作Redis时,如何存储一个对象的数据,大家是非常关心的问题,虽然官方提供了存储String,List,Set等等类型,但并不满足我们现在实际应用.存储一个对象是是 ...

  7. vue的nextTick的实现

    vue的nextTick是用浏览器支持的方法模拟nodejs的process.nextTick 老版本的vue用如下方法来模拟 Promise.thenMutationObserver(Mutatio ...

  8. poj 1523 割点 tarjan

    Description Consider the two networks shown below. Assuming that data moves around these networks on ...

  9. scrapy新版本特性

    1:在spider中返回一个自定义的字典,老版本中需要先定义一个Item,填充后再返回一个对象 新版本中可以直接返回一个字典 2:Per-spider settings  为每个spider进行单独设 ...

  10. windows mysql 安装及启动

    0.下载: