POJ 1408 Fishnet【枚举+线段相交+叉积求面积】
题目:
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 1604 | Accepted: 1026 |
Description
him. He found a square wood-frame and a long thread among the wrecks. He had to survive in this island until someone came and saved him.
In order to catch fish, he began to make a kind of fishnet by cutting the long thread into short threads and fixing them at pegs on the square wood-frame. He wanted to know the sizes of the meshes of the fishnet to see whether he could catch small fish as well
as large ones.
The wood frame is perfectly square with four thin edges on meter long: a bottom edge, a top edge, a left edge, and a right edge. There are n pegs on each edge, and thus there are 4n pegs in total. The positions of pegs are represented by their (x,y)-coordinates.
Those of an example case with n=2 are depicted in figures below. The position of the ith peg on the bottom edge is represented by (ai,0). That on the top edge, on the left edge and on the right edge are represented by (bi,1), (0,ci) and (1,di), respectively.
The long thread is cut into 2n threads with appropriate lengths. The threads are strained between (ai,0) and (bi,1),and between (0,ci) and (1,di) (i=1,...,n).
You should write a program that reports the size of the largest mesh among the (n+1)2 meshes of the fishnet made by fixing the threads at the pegs. You may assume that the thread he found is long enough to make the fishnet and the wood-frame is thin enough
for neglecting its thickness.
Input
n
a1 a2 ... an
b1 b2 ... bn
c1 c2 ... cn
d1 d2 ... dn
you may assume 0 < n <= 30, 0 < ai,bi,ci,di < 1
Output
Sample Input
2
0.2000000 0.6000000
0.3000000 0.8000000
0.1000000 0.5000000
0.5000000 0.6000000
2
0.3333330 0.6666670
0.3333330 0.6666670
0.3333330 0.6666670
0.3333330 0.6666670
4
0.2000000 0.4000000 0.6000000 0.8000000
0.1000000 0.5000000 0.6000000 0.9000000
0.2000000 0.4000000 0.6000000 0.8000000
0.1000000 0.5000000 0.6000000 0.9000000
2
0.5138701 0.9476283
0.1717362 0.1757412
0.3086521 0.7022313
0.2264312 0.5345343
1
0.4000000
0.6000000
0.3000000
0.5000000
0
Sample Output
0.215657
0.111112
0.078923
0.279223
0.348958
Source
题意:
在直角坐标系中,把第一象限的那个单位面积的正方形分成 n*n 个小四边形,
求最大四边形面积
注意:
点的输入顺序【周边上点,都是按照从小到大的顺序输入的】
算法: 枚举+线段求交点+叉积求面积
思路:
存储每一个点【周边的+线段交点】,
然后依次遍历每一个四边形的面积
Code:
/****************************************************************************
C Accepted 208 KB 16 ms C++ 2155 B
题意:
在直角坐标系中,把第一象限的那个单位面积的正方形分成 n*n 个小四边形,
求最大四边形面积 注意:点的输入顺序【周边上点,都是按照从小到大的顺序输入的】 算法:枚举+线段求交点+叉积求面积 思路:存储每一个点【周边的+交点】,
然后依次遍历每一个四边形的面积
******************************************************************************/
#include<stdio.h>
#include<math.h>
#include<algorithm>
using namespace std; const int maxn = 40;
struct Point{
double x,y;
Point() {}
Point(double _x, double _y){
x = _x;
y = _y;
} Point operator + (const Point &B) const {
return Point(x+B.x, y+B.y);
}
Point operator - (const Point &B) const {
return Point(x-B.x, y-B.y);
}
Point operator * (const double &p) const {
return Point(p*x, p*y);
} }p[maxn][maxn];
typedef Point Vector; /** 叉积求面积 */
double Cross(Point A, Point B)
{
return A.x*B.y - A.y*B.x;
} /** 求线段交点 */
Point GetLineIntersection(Point P, Vector v, Point Q, Vector w){
Vector u = P-Q;
double t = Cross(w, u) / Cross(v, w);
return P+v*t;
} /** 根据四个点用叉积求四边形面积 */
double Area(Point a, Point b, Point c, Point d){
return fabs(Cross(c-a,b-a)) / 2.0 + fabs(Cross(c-a,d-a)) / 2.0;
} int main()
{
int n;
while(scanf("%d", &n) != EOF)
{
if(n == 0) break; p[0][0] = Point(0,1); //定位四个顶点
p[0][n+1] = Point(1,1);
p[n+1][0] = Point(0,0);
p[n+1][n+1] = Point(1,0); double a,b,c,d; //依次存储周边的点
for(int i = 1; i <= n; i++) //a
{
scanf("%lf", &a);
p[n+1][i] = Point(a,0);
} for(int i = 1; i <= n; i++)// b
{
scanf("%lf", &b);
p[0][i] = Point(b,1);
} for(int i = n; i >= 1; i--) //c
{
scanf("%lf", &c);
p[i][0] = Point(0,c);
} for(int i = n; i >= 1; i--) //d
{
scanf("%lf", &d);
p[i][n+1] = Point(1,d);
} //求中间的交点
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= n; j++)
{
p[i][j] = GetLineIntersection(p[i][0], p[i][0]-p[i][n+1], p[n+1][j], p[n+1][j]-p[0][j]);
}
} double ans = 0;
double tmp;
//从上到下、从左到右依次遍历每个四边形
for(int i = 0; i <= n; i++)
{
for(int j = 0; j <= n; j++)
{
tmp = Area(p[i][j],p[i][j+1],p[i+1][j+1],p[i+1][j]);
ans = max(ans,tmp);
}
}
printf("%.6lf\n", ans);
}
return 0;
}
POJ 1408 Fishnet【枚举+线段相交+叉积求面积】的更多相关文章
- POJ 1039 Pipe 枚举线段相交
Pipe Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9493 Accepted: 2877 Description ...
- 两条线段求交点+叉积求面积 poj 1408
题目链接:https://vjudge.net/problem/POJ-1408 题目是叫我们求出所有四边形里最大的那个的面积. 思路:因为这里只给了我们正方形四条边上的点,所以我们要先计算横竖线段两 ...
- poj 1066(枚举+线段相交)
Treasure Hunt Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 6328 Accepted: 2627 Des ...
- POJ 1066 Treasure Hunt(线段相交判断)
Treasure Hunt Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 4797 Accepted: 1998 Des ...
- poj 3304(直线与线段相交)
传送门:Segments 题意:线段在一个直线上的摄影相交 求求是否存在一条直线,使所有线段到这条直线的投影至少有一个交点 分析:可以在共同投影处作原直线的垂线,则该垂线与所有线段都相交<==& ...
- POJ 1066--Treasure Hunt(判断线段相交)
Treasure Hunt Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 7857 Accepted: 3247 Des ...
- POJ 1039 直线和线段相交
题意: 题意很好理解,从左边射过来的光线,最远能经过管道到右边多少距离. 分析: 光线一定经过一个上端点和一个下端点,这一点很容易想到.然后枚举上下端点即可 #include <iostream ...
- POJ 2653 Pick-up sticks(线段相交)
题意:给定n个木棍依次放下,要求最终判断没被覆盖的木棍是哪些. 思路:快速排斥以及跨立实验可以判断线段相交. #include<algorithm> #include<cstdio& ...
- [poj 1127]Jack Straws[线段相交][并查集]
题意: 给出一系列线段,判断某两个线段是否连通. 思路: 根据线段相交情况建立并查集, 在同一并查集中则连通. (第一反应是强连通分量...实际上只要判断共存即可, 具体的方向啊是没有关系的..) 并 ...
随机推荐
- 字符编码简介:ASCII,Unicode,UTF-8,GB2312
字符编码简介:ASCII,Unicode,UTF-8,GB2312 1. ASCII码 我们知道,在计算机内部,所有的信息最终都表示为一个二进制的字符串.每一个二进制位(bit)有0和 1两种状态,因 ...
- linux/unix核心设计思想
1) 程序应该小而专一,程序应该尽量的小,且仅仅专注于一件事上.不要开发那些看起来实用可是90%的情况都用不到的特性: 2) 程序不仅仅要考虑性能, 程序的可移植性更重要,shell和perl.pyt ...
- Openfiler 之Linux 安装ISCSI initiator和自动挂载
OPENFILER做TARGET,RED HAT做客户端,如果默认没有安装ISCSI initiator的话,可以在光盘上找到RPM包直接安装.service iscsi start,启动服务,ser ...
- 在OpenErp的配置文件中为数据库密码加密
openerp连接数据库的用户名和密码可以命令行给出, 也可以设置在配置文件中, 如下例所示: db_user = openerp db_password = laoliu 因为它使用了明文的密码 ...
- T420s成功加装固态硬盘(SSD)
目的 为了提升系统和经常使用工具的启动速度,ThinkPad T420s光驱位加一块固态硬盘. 操作步骤 购买:没做太多对照了解,初步计划是安装在光驱位,直接JD上买了SanDisk的128G和推荐的 ...
- 【BIEE】16_饼图应用
在BIEE中,我们可以使用饼图来展示报表数据 饼图在使用中有三元素:①切片 ②饼图 ③度量 那么我们来分别看下这三个元素的功能分别是什么? 我们通过上图可以看出度量中存在2个度量,那么此时的饼图数量是 ...
- Spring属性占位符 PropertyPlaceholderConfigurer
http://www.cnblogs.com/yl2755/archive/2012/05/06/2486752.html PropertyPlaceholderConfigurer是个bean工厂后 ...
- php中的可变变量、可变函数、匿名函数
1.可变变量 简而言之:获取一个普通变量的值作为这个可变变量的变量名. 如: $a = "hello"; $$a = " world"; /* $a 的值为&q ...
- GEEK学习笔记— —程序猿面试宝典笔记(三)
所谓笔记,就是比較个人的东西,把个人认为有点意思的东西记录下来~~ 程序猿面试宝典笔记(一)基本概念 程序猿面试宝典笔记(二)预处理.const和sizeof 程序猿面试宝典笔记(三)auto_ptr ...
- 【转载】html标签语义化
Html语义化标签-语义化你的HTML标签和属性 1 语义化你的HTML标签和属性 1.1 <Hx> 1.2 <p> 1.3 <ul>.<ol>.& ...