基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题
在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序。一个排列中逆序的总数就称为这个排列的逆序数。
如2 4 3 1中,2 1,4 3,4 1,3 1是逆序,逆序数是4。
 
1-n的全排列中,逆序数最小为0(正序),最大为n*(n-1) / 2(倒序)
给出2个数n和k,求1-n的全排列中,逆序数为k的排列有多少种?
例如:n = 4 k = 3。
 
1 2 3 4的排列中逆序为3的共有6个,分别是:
1 4 3 2
2 3 4 1
2 4 1 3
3 1 4 2
3 2 1 4
4 1 2 3
 
由于逆序排列的数量非常大,因此只需计算并输出该数 Mod 10^9 + 7的结果就可以了。
 
Input
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 10000)
第2 - T + 1行:每行2个数n,k。中间用空格分隔。(2 <= n <= 1000, 0 <= k <= 20000)
Output
共T行,对应逆序排列的数量 Mod (10^9 + 7)
Input示例
1
4 3
Output示例
6

//容易想到是dp, dp[i][j] 表 i 个数,逆序为 k 的排列的话
dp[i][j] = dp[i-1][j] + dp[i-1][j-1] + dp[i-1][j-2] +... ...+ dp[i-1][j-(i-1)] ( j - i >=0 )
因为 i 这个数,可以插在 i 个空,会增加 0 -- (i-1)个逆序对
而dp[i][j-1] = dp[i-1][j-1] + dp[i-1][j-2] +... ... + dp[i-1][j-1-(i-1)]
两式相减,dp[i][j] = dp[i-1][j] + dp[i-1][j-i]
 #include <bits/stdc++.h>
using namespace std;
#define MOD 1000000007
#define INF 0x3f3f3f3f
#define eps 1e-9
#define LL long long
#define MX 1002
#define MK 20002 int n,k;
int dp[MX][MK]; void Init()
{
dp[][]=;
for (int i=;i<=;i++)
{
int ut = min(i*(i-)/,);
for (int j=;j<=ut;j++)
{
dp[i][j]=dp[i][j-];
dp[i][j]=(dp[i][j]+dp[i-][j])%MOD;
if (j-i>=) dp[i][j]=(dp[i][j]+MOD-dp[i-][j-i])%MOD;
}
}
}

1020 逆序排列(DP)的更多相关文章

  1. 51nod 1020 逆序排列 DP

    在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序.一个排列中逆序的总数就称为这个排列的逆序数. 如2 4 3 1中,2 1,4 3,4 1,3 1是逆序 ...

  2. 51nod 1020 逆序排列——dp

    在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序.一个排列中逆序的总数就称为这个排列的逆序数. 如2 4 3 1中,2 1,4 3,4 1,3 1是逆序 ...

  3. 51nod 1020 逆序排列 递推DP

    1020 逆序排列  基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么 ...

  4. 51 Nod 1020 逆序排列

    1020 逆序排列  基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么 ...

  5. 51nod 1020 逆序排列(dp,递推)

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1020 题意:是中文题. 题解:很显然要设dp[i][j]表示 ...

  6. 51nod 1020 逆序排列

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1020 题意: 思路: 一开始用了三重循环... 设f(n,k)表示n个数 ...

  7. 【题解】逆序排列 [51nod1020]

    [题解]逆序排列 [51nod1020] 传送门:逆序排列 \([51nod1020]\) [题目描述] 共 \(T\) 组测试点,每一组给出 \(2\) 个整数 \(n\) 和 \(k\),在 \( ...

  8. SQL-27 给出每个员工每年薪水涨幅超过5000的员工编号emp_no、薪水变更开始日期from_date以及薪水涨幅值salary_growth,并按照salary_growth逆序排列。 提示:在sqlite中获取datetime时间对应的年份函数为strftime('%Y', to_date)

    题目描述 给出每个员工每年薪水涨幅超过5000的员工编号emp_no.薪水变更开始日期from_date以及薪水涨幅值salary_growth,并按照salary_growth逆序排列. 提示:在s ...

  9. SQL-15 查找employees表所有emp_no为奇数,且last_name不为Mary的员工信息,并按照hire_date逆序排列

    题目描述 查找employees表所有emp_no为奇数,且last_name不为Mary的员工信息,并按照hire_date逆序排列CREATE TABLE `employees` (`emp_no ...

随机推荐

  1. .sh文件怎么安装?

    实例:sh java_1.8.0.sh示例:sh filename.sh

  2. U盘制作linux centos6.5

    2015年8月4日 1.下载ULTIso软件,注册 2.DVD1的那个拖进去 3.[一定要双击那个进去]才“写入硬盘镜像”,否则只“写入‘,还是一个iso文件,不是提取出来的文件. 4.覆盖相应的文件 ...

  3. 使用LoadRunner监控Apache的步骤 (转)

    一.Apache上的设置 打开<Apache Installation>/conf/httpd.conf,进行如下修改: 1.  设置允许查看Apache运行状态的主机 # # Allow ...

  4. React Native Android入门实战及深入源代码分析系列(2)——React Native源代码编译

    本文为老曾原创.转载需注明出处:viewmode=contents">http://blog.csdn.net/minimicall?viewmode=contents 在上一节中,我 ...

  5. 神技do{}while(false)

    神技do{}while(false) do{}while(false)或者说do{}while(0),本人在linux源码中学得,起初看起来比较奇怪,但在处理连续流程中特别有用,例如ABC三个流程,A ...

  6. MvcPager帮助文档 - MvcAjaxOptions 类

    表示用于 MvcPager 在 Ajax 分页模式下的选项设置,该类继承自 AjaxOptions. 公共属性: 名称 说明 默认值 AllowCache 获取或设置一个值,该值指示是否在Ajax分页 ...

  7. TortoiseSVN客户端使用方法

    SVN对于程序开发来说是非常重要的东西,它是非常不错的版本管理工具,下面介绍一下TortoiseSVN客户端的使用方法. 工具/原料 TortoiseSVN 方法/步骤   如果没有TortoiseS ...

  8. Backup and Recovery Basics1

    一.Backup and Recovery Overview 1.Backup and Recovery Overview 1.1 What is Backup and Recovery? 一般,备份 ...

  9. 383. Ransom Note【easy】

    383. Ransom Note[easy] Given an arbitrary ransom note string and another string containing letters f ...

  10. ssh-keygen配合ssh_config免密码登录VPS

    ssh-keygen配合ssh_config免密码登录VPS Posted by fiture / 2012年12月29日 / 「Ubuntu」「分享」 用过终端登录远程服务器或者VPS的童鞋都用过类 ...