refinedet只预测4个层,并且只有conv6_1、conv6_2,没有ssd中的conv7、8、9

refinedet的4个层都只有1个aspect ratio和1个min_size,所以每层每个点只有3个anchor,arm中做location的conv4_3_norm_mbox_loc等层都是3*4个channel,做confidence的conv4_3_norm_mbox_conf都是6个channel,因为这里变成了2分类,每个anchor必须要有negative和positive的概率

refinedet是两步都要回归bounding box的框,refinedet中的odm_loss就相当于ssd中的mbox_loss,mbox_loss获得了anchor的坐标后会加上回归再进行训练,odm_loss获得anchor的坐标后先要加上arm_loc的回归,再加odm_loc的回归,这样再去进行loss计算.

name: "vgg_1/8"
layer {
name: "data"
type: "AnnotatedData"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mirror: true
mean_value: 104.0
mean_value: 117.0
mean_value: 123.0
resize_param {
prob: 1.0
resize_mode: WARP
height:
width:
interp_mode: LINEAR
interp_mode: AREA
interp_mode: NEAREST
interp_mode: CUBIC
interp_mode: LANCZOS4
}
emit_constraint {
emit_type: CENTER
}
distort_param {
brightness_prob: 0.5
brightness_delta: 32.0
contrast_prob: 0.5
contrast_lower: 0.5
contrast_upper: 1.5
hue_prob: 0.5
hue_delta: 18.0
saturation_prob: 0.5
saturation_lower: 0.5
saturation_upper: 1.5
random_order_prob: 0.0
}
expand_param {
prob: 0.5
max_expand_ratio: 4.0
}
}
data_param {
source:"examples/cityscapes/cityscapes_train_lmdb"
batch_size:
backend: LMDB
}
annotated_data_param {
batch_sampler {
max_sample:
max_trials:
}
batch_sampler {
sampler {
min_scale: 0.300000011921
max_scale: 1.0
min_aspect_ratio: 0.5
max_aspect_ratio: 2.0
}
sample_constraint {
min_jaccard_overlap: 0.10000000149
}
max_sample:
max_trials:
}
batch_sampler {
sampler {
min_scale: 0.300000011921
max_scale: 1.0
min_aspect_ratio: 0.5
max_aspect_ratio: 2.0
}
sample_constraint {
min_jaccard_overlap: 0.300000011921
}
max_sample:
max_trials:
}
batch_sampler {
sampler {
min_scale: 0.300000011921
max_scale: 1.0
min_aspect_ratio: 0.5
max_aspect_ratio: 2.0
}
sample_constraint {
min_jaccard_overlap: 0.5
}
max_sample:
max_trials:
}
batch_sampler {
sampler {
min_scale: 0.300000011921
max_scale: 1.0
min_aspect_ratio: 0.5
max_aspect_ratio: 2.0
}
sample_constraint {
min_jaccard_overlap: 0.699999988079
}
max_sample:
max_trials:
}
batch_sampler {
sampler {
min_scale: 0.300000011921
max_scale: 1.0
min_aspect_ratio: 0.5
max_aspect_ratio: 2.0
}
sample_constraint {
min_jaccard_overlap: 0.899999976158
}
max_sample:
max_trials:
}
batch_sampler {
sampler {
min_scale: 0.300000011921
max_scale: 1.0
min_aspect_ratio: 0.5
max_aspect_ratio: 2.0
}
sample_constraint {
max_jaccard_overlap: 1.0
}
max_sample:
max_trials:
}
label_map_file: "data/cityscapes/labelmap_cityscapes.prototxt"
}
}
layer {
name: "conv1_1"
type: "Convolution"
bottom: "data"
top: "conv1_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu1_1"
type: "ReLU"
bottom: "conv1_1"
top: "conv1_1"
}
layer {
name: "conv1_2"
type: "Convolution"
bottom: "conv1_1"
top: "conv1_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu1_2"
type: "ReLU"
bottom: "conv1_2"
top: "conv1_2"
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1_2"
top: "pool1"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "conv2_1"
type: "Convolution"
bottom: "pool1"
top: "conv2_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu2_1"
type: "ReLU"
bottom: "conv2_1"
top: "conv2_1"
}
layer {
name: "conv2_2"
type: "Convolution"
bottom: "conv2_1"
top: "conv2_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu2_2"
type: "ReLU"
bottom: "conv2_2"
top: "conv2_2"
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2_2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "conv3_1"
type: "Convolution"
bottom: "pool2"
top: "conv3_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu3_1"
type: "ReLU"
bottom: "conv3_1"
top: "conv3_1"
}
layer {
name: "conv3_2"
type: "Convolution"
bottom: "conv3_1"
top: "conv3_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu3_2"
type: "ReLU"
bottom: "conv3_2"
top: "conv3_2"
}
layer {
name: "conv3_3"
type: "Convolution"
bottom: "conv3_2"
top: "conv3_3"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu3_3"
type: "ReLU"
bottom: "conv3_3"
top: "conv3_3"
}
layer {
name: "pool3"
type: "Pooling"
bottom: "conv3_3"
top: "pool3"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "conv4_1"
type: "Convolution"
bottom: "pool3"
top: "conv4_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu4_1"
type: "ReLU"
bottom: "conv4_1"
top: "conv4_1"
}
layer {
name: "conv4_2"
type: "Convolution"
bottom: "conv4_1"
top: "conv4_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu4_2"
type: "ReLU"
bottom: "conv4_2"
top: "conv4_2"
}
layer {
name: "conv4_3"
type: "Convolution"
bottom: "conv4_2"
top: "conv4_3"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu4_3"
type: "ReLU"
bottom: "conv4_3"
top: "conv4_3"
}
layer {
name: "pool4"
type: "Pooling"
bottom: "conv4_3"
top: "pool4"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "conv5_1"
type: "Convolution"
bottom: "pool4"
top: "conv5_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu5_1"
type: "ReLU"
bottom: "conv5_1"
top: "conv5_1"
}
layer {
name: "conv5_2"
type: "Convolution"
bottom: "conv5_1"
top: "conv5_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu5_2"
type: "ReLU"
bottom: "conv5_2"
top: "conv5_2"
}
layer {
name: "conv5_3"
type: "Convolution"
bottom: "conv5_2"
top: "conv5_3"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu5_3"
type: "ReLU"
bottom: "conv5_3"
top: "conv5_3"
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5_3"
top: "pool5"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "fc6"
type: "Convolution"
bottom: "pool5"
top: "fc6"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "fc6"
top: "fc6"
}
layer {
name: "fc7"
type: "Convolution"
bottom: "fc6"
top: "fc7"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "fc7"
top: "fc7"
}
layer {
name: "conv6_1"
type: "Convolution"
bottom: "fc7"
top: "conv6_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv6_1_relu"
type: "ReLU"
bottom: "conv6_1"
top: "conv6_1"
}
layer {
name: "conv6_2"
type: "Convolution"
bottom: "conv6_1"
top: "conv6_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv6_2_relu"
type: "ReLU"
bottom: "conv6_2"
top: "conv6_2"
}
layer {
name: "conv4_3_norm_mbox_loc"
type: "Convolution"
bottom: "conv4_3"
top: "conv4_3_norm_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv4_3_norm_mbox_loc_perm"
type: "Permute"
bottom: "conv4_3_norm_mbox_loc"
top: "conv4_3_norm_mbox_loc_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "conv4_3_norm_mbox_loc_flat"
type: "Flatten"
bottom: "conv4_3_norm_mbox_loc_perm"
top: "conv4_3_norm_mbox_loc_flat"
flatten_param {
axis:
}
}
layer {
name: "conv4_3_norm_mbox_conf"
type: "Convolution"
bottom: "conv4_3"
top: "conv4_3_norm_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv4_3_norm_mbox_conf_perm"
type: "Permute"
bottom: "conv4_3_norm_mbox_conf"
top: "conv4_3_norm_mbox_conf_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "conv4_3_norm_mbox_conf_flat"
type: "Flatten"
bottom: "conv4_3_norm_mbox_conf_perm"
top: "conv4_3_norm_mbox_conf_flat"
flatten_param {
axis:
}
}
layer {
name: "conv4_3_norm_mbox_priorbox"
type: "PriorBox"
bottom: "conv4_3"
bottom: "data"
top: "conv4_3_norm_mbox_priorbox"
prior_box_param {
min_size: 16.0
aspect_ratio: 2.0
flip: true
clip: false
variance: 0.10000000149
variance: 0.10000000149
variance: 0.20000000298
variance: 0.20000000298
step: 8.0
offset: 0.5
}
}
layer {
name: "conv5_3_norm_mbox_loc"
type: "Convolution"
bottom: "conv5_3"
top: "conv5_3_norm_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv5_3_norm_mbox_loc_perm"
type: "Permute"
bottom: "conv5_3_norm_mbox_loc"
top: "conv5_3_norm_mbox_loc_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "conv5_3_norm_mbox_loc_flat"
type: "Flatten"
bottom: "conv5_3_norm_mbox_loc_perm"
top: "conv5_3_norm_mbox_loc_flat"
flatten_param {
axis:
}
}
layer {
name: "conv5_3_norm_mbox_conf"
type: "Convolution"
bottom: "conv5_3"
top: "conv5_3_norm_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv5_3_norm_mbox_conf_perm"
type: "Permute"
bottom: "conv5_3_norm_mbox_conf"
top: "conv5_3_norm_mbox_conf_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "conv5_3_norm_mbox_conf_flat"
type: "Flatten"
bottom: "conv5_3_norm_mbox_conf_perm"
top: "conv5_3_norm_mbox_conf_flat"
flatten_param {
axis:
}
}
layer {
name: "conv5_3_norm_mbox_priorbox"
type: "PriorBox"
bottom: "conv5_3"
bottom: "data"
top: "conv5_3_norm_mbox_priorbox"
prior_box_param {
min_size: 32.0
aspect_ratio: 2.0
flip: true
clip: false
variance: 0.10000000149
variance: 0.10000000149
variance: 0.20000000298
variance: 0.20000000298
step: 16.0
offset: 0.5
}
}
layer {
name: "fc7_mbox_loc"
type: "Convolution"
bottom: "fc7"
top: "fc7_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "fc7_mbox_loc_perm"
type: "Permute"
bottom: "fc7_mbox_loc"
top: "fc7_mbox_loc_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "fc7_mbox_loc_flat"
type: "Flatten"
bottom: "fc7_mbox_loc_perm"
top: "fc7_mbox_loc_flat"
flatten_param {
axis:
}
}
layer {
name: "fc7_mbox_conf"
type: "Convolution"
bottom: "fc7"
top: "fc7_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "fc7_mbox_conf_perm"
type: "Permute"
bottom: "fc7_mbox_conf"
top: "fc7_mbox_conf_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "fc7_mbox_conf_flat"
type: "Flatten"
bottom: "fc7_mbox_conf_perm"
top: "fc7_mbox_conf_flat"
flatten_param {
axis:
}
}
layer {
name: "fc7_mbox_priorbox"
type: "PriorBox"
bottom: "fc7"
bottom: "data"
top: "fc7_mbox_priorbox"
prior_box_param {
min_size: 64.0
aspect_ratio: 2.0
flip: true
clip: false
variance: 0.10000000149
variance: 0.10000000149
variance: 0.20000000298
variance: 0.20000000298
step: 32.0
offset: 0.5
}
}
layer {
name: "conv6_2_mbox_loc"
type: "Convolution"
bottom: "conv6_2"
top: "conv6_2_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv6_2_mbox_loc_perm"
type: "Permute"
bottom: "conv6_2_mbox_loc"
top: "conv6_2_mbox_loc_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "conv6_2_mbox_loc_flat"
type: "Flatten"
bottom: "conv6_2_mbox_loc_perm"
top: "conv6_2_mbox_loc_flat"
flatten_param {
axis:
}
}
layer {
name: "conv6_2_mbox_conf"
type: "Convolution"
bottom: "conv6_2"
top: "conv6_2_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv6_2_mbox_conf_perm"
type: "Permute"
bottom: "conv6_2_mbox_conf"
top: "conv6_2_mbox_conf_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "conv6_2_mbox_conf_flat"
type: "Flatten"
bottom: "conv6_2_mbox_conf_perm"
top: "conv6_2_mbox_conf_flat"
flatten_param {
axis:
}
}
layer {
name: "conv6_2_mbox_priorbox"
type: "PriorBox"
bottom: "conv6_2"
bottom: "data"
top: "conv6_2_mbox_priorbox"
prior_box_param {
min_size: 128.0
aspect_ratio: 2.0
flip: true
clip: false
variance: 0.10000000149
variance: 0.10000000149
variance: 0.20000000298
variance: 0.20000000298
step: 64.0
offset: 0.5
}
}
layer {
name: "arm_loc"
type: "Concat"
bottom: "conv4_3_norm_mbox_loc_flat"
bottom: "conv5_3_norm_mbox_loc_flat"
bottom: "fc7_mbox_loc_flat"
bottom: "conv6_2_mbox_loc_flat"
top: "arm_loc"
concat_param {
axis:
}
}
layer {
name: "arm_conf"
type: "Concat"
bottom: "conv4_3_norm_mbox_conf_flat"
bottom: "conv5_3_norm_mbox_conf_flat"
bottom: "fc7_mbox_conf_flat"
bottom: "conv6_2_mbox_conf_flat"
top: "arm_conf"
concat_param {
axis:
}
}
layer {
name: "arm_priorbox"
type: "Concat"
bottom: "conv4_3_norm_mbox_priorbox"
bottom: "conv5_3_norm_mbox_priorbox"
bottom: "fc7_mbox_priorbox"
bottom: "conv6_2_mbox_priorbox"
top: "arm_priorbox"
concat_param {
axis:
}
}
layer {
name: "P3_mbox_loc_p"
type: "Convolution"
bottom: "conv4_3"
top: "P3_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "P3_mbox_loc_perm"
type: "Permute"
bottom: "P3_mbox_loc"
top: "P3_mbox_loc_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "P3_mbox_loc_flat"
type: "Flatten"
bottom: "P3_mbox_loc_perm"
top: "P3_mbox_loc_flat"
flatten_param {
axis:
}
}
layer {
name: "P3_mbox_conf_p"
type: "Convolution"
bottom: "conv4_3"
top: "P3_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "P3_mbox_conf_perm"
type: "Permute"
bottom: "P3_mbox_conf"
top: "P3_mbox_conf_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "P3_mbox_conf_flat"
type: "Flatten"
bottom: "P3_mbox_conf_perm"
top: "P3_mbox_conf_flat"
flatten_param {
axis:
}
}
layer {
name: "P4_mbox_loc_p"
type: "Convolution"
bottom: "conv5_3"
top: "P4_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "P4_mbox_loc_perm"
type: "Permute"
bottom: "P4_mbox_loc"
top: "P4_mbox_loc_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "P4_mbox_loc_flat"
type: "Flatten"
bottom: "P4_mbox_loc_perm"
top: "P4_mbox_loc_flat"
flatten_param {
axis:
}
}
layer {
name: "P4_mbox_conf_p"
type: "Convolution"
bottom: "conv5_3"
top: "P4_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "P4_mbox_conf_perm"
type: "Permute"
bottom: "P4_mbox_conf"
top: "P4_mbox_conf_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "P4_mbox_conf_flat"
type: "Flatten"
bottom: "P4_mbox_conf_perm"
top: "P4_mbox_conf_flat"
flatten_param {
axis:
}
}
layer {
name: "P5_mbox_loc_p"
type: "Convolution"
bottom: "fc7"
top: "P5_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "P5_mbox_loc_perm"
type: "Permute"
bottom: "P5_mbox_loc"
top: "P5_mbox_loc_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "P5_mbox_loc_flat"
type: "Flatten"
bottom: "P5_mbox_loc_perm"
top: "P5_mbox_loc_flat"
flatten_param {
axis:
}
}
layer {
name: "P5_mbox_conf_p"
type: "Convolution"
bottom: "fc7"
top: "P5_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "P5_mbox_conf_perm"
type: "Permute"
bottom: "P5_mbox_conf"
top: "P5_mbox_conf_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "P5_mbox_conf_flat"
type: "Flatten"
bottom: "P5_mbox_conf_perm"
top: "P5_mbox_conf_flat"
flatten_param {
axis:
}
}
layer {
name: "P6_mbox_loc_p"
type: "Convolution"
bottom: "conv6_2"
top: "P6_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "P6_mbox_loc_perm"
type: "Permute"
bottom: "P6_mbox_loc"
top: "P6_mbox_loc_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "P6_mbox_loc_flat"
type: "Flatten"
bottom: "P6_mbox_loc_perm"
top: "P6_mbox_loc_flat"
flatten_param {
axis:
}
}
layer {
name: "P6_mbox_conf_p"
type: "Convolution"
bottom: "conv6_2"
top: "P6_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output:
pad:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "P6_mbox_conf_perm"
type: "Permute"
bottom: "P6_mbox_conf"
top: "P6_mbox_conf_perm"
permute_param {
order:
order:
order:
order:
}
}
layer {
name: "P6_mbox_conf_flat"
type: "Flatten"
bottom: "P6_mbox_conf_perm"
top: "P6_mbox_conf_flat"
flatten_param {
axis:
}
}
layer {
name: "odm_loc"
type: "Concat"
bottom: "P3_mbox_loc_flat"
bottom: "P4_mbox_loc_flat"
bottom: "P5_mbox_loc_flat"
bottom: "P6_mbox_loc_flat"
top: "odm_loc"
concat_param {
axis:
}
}
layer {
name: "odm_conf"
type: "Concat"
bottom: "P3_mbox_conf_flat"
bottom: "P4_mbox_conf_flat"
bottom: "P5_mbox_conf_flat"
bottom: "P6_mbox_conf_flat"
top: "odm_conf"
concat_param {
axis:
}
}
layer {
name: "arm_loss"
type: "MultiBoxLoss"
bottom: "arm_loc"
bottom: "arm_conf"
bottom: "arm_priorbox"
bottom: "label"
top: "arm_loss"
include {
phase: TRAIN
}
propagate_down: true
propagate_down: true
propagate_down: false
propagate_down: false
loss_param {
normalization: VALID
}
multibox_loss_param {
loc_loss_type: SMOOTH_L1
conf_loss_type: SOFTMAX
loc_weight: 1.0
num_classes:
share_location: true
match_type: PER_PREDICTION
overlap_threshold: 0.5
use_prior_for_matching: true
background_label_id:
use_difficult_gt: true
neg_pos_ratio: 3.0
neg_overlap: 0.5
code_type: CENTER_SIZE
ignore_cross_boundary_bbox: false
mining_type: MAX_NEGATIVE
objectness_score: 0.00999999977648
}
}
layer {
name: "arm_conf_reshape"
type: "Reshape"
bottom: "arm_conf"
top: "arm_conf_reshape"
reshape_param {
shape {
dim:
dim: -
dim:
}
}
}
layer {
name: "arm_conf_softmax"
type: "Softmax"
bottom: "arm_conf_reshape"
top: "arm_conf_softmax"
softmax_param {
axis:
}
}
layer {
name: "arm_conf_flatten"
type: "Flatten"
bottom: "arm_conf_softmax"
top: "arm_conf_flatten"
flatten_param {
axis:
}
}
layer {
name: "odm_loss"
type: "MultiBoxLoss"
bottom: "odm_loc"
bottom: "odm_conf"
bottom: "arm_priorbox"
bottom: "label"
bottom: "arm_conf_flatten"
bottom: "arm_loc"
top: "odm_loss"
include {
phase: TRAIN
}
propagate_down: true
propagate_down: true
propagate_down: false
propagate_down: false
propagate_down: false
propagate_down: false
loss_param {
normalization: VALID
}
multibox_loss_param {
loc_loss_type: SMOOTH_L1
conf_loss_type: SOFTMAX
loc_weight: 1.0
num_classes:
share_location: true
match_type: PER_PREDICTION
overlap_threshold: 0.5
use_prior_for_matching: true
background_label_id:
use_difficult_gt: true
neg_pos_ratio: 3.0
neg_overlap: 0.5
code_type: CENTER_SIZE
ignore_cross_boundary_bbox: false
mining_type: MAX_NEGATIVE
objectness_score: 0.00999999977648
}
} layer {
name: "conv1_1_t"
type: "Convolution"
bottom: "data"
top: "conv1_1_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu1_1_t"
type: "ReLU"
bottom: "conv1_1_t"
top: "conv1_1_t"
}
layer {
name: "conv1_2_t"
type: "Convolution"
bottom: "conv1_1_t"
top: "conv1_2_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu1_2_t"
type: "ReLU"
bottom: "conv1_2_t"
top: "conv1_2_t"
}
layer {
name: "pool1_t"
type: "Pooling"
bottom: "conv1_2_t"
top: "pool1_t"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "conv2_1_t"
type: "Convolution"
bottom: "pool1_t"
top: "conv2_1_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu2_1_t"
type: "ReLU"
bottom: "conv2_1_t"
top: "conv2_1_t"
}
layer {
name: "conv2_2_t"
type: "Convolution"
bottom: "conv2_1_t"
top: "conv2_2_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu2_2_t"
type: "ReLU"
bottom: "conv2_2_t"
top: "conv2_2_t"
}
layer {
name: "pool2_t"
type: "Pooling"
bottom: "conv2_2_t"
top: "pool2_t"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "conv3_1_t"
type: "Convolution"
bottom: "pool2_t"
top: "conv3_1_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu3_1_t"
type: "ReLU"
bottom: "conv3_1_t"
top: "conv3_1_t"
}
layer {
name: "conv3_2_t"
type: "Convolution"
bottom: "conv3_1_t"
top: "conv3_2_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu3_2_t"
type: "ReLU"
bottom: "conv3_2_t"
top: "conv3_2_t"
}
layer {
name: "conv3_3_t"
type: "Convolution"
bottom: "conv3_2_t"
top: "conv3_3_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu3_3_t"
type: "ReLU"
bottom: "conv3_3_t"
top: "conv3_3_t"
}
layer {
name: "pool3_t"
type: "Pooling"
bottom: "conv3_3_t"
top: "pool3_t"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "conv4_1_t"
type: "Convolution"
bottom: "pool3_t"
top: "conv4_1_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu4_1_t"
type: "ReLU"
bottom: "conv4_1_t"
top: "conv4_1_t"
}
layer {
name: "conv4_2_t"
type: "Convolution"
bottom: "conv4_1_t"
top: "conv4_2_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu4_2_t"
type: "ReLU"
bottom: "conv4_2_t"
top: "conv4_2_t"
}
layer {
name: "conv4_3_t"
type: "Convolution"
bottom: "conv4_2_t"
top: "conv4_3_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "relu4_3_t"
type: "ReLU"
bottom: "conv4_3_t"
top: "conv4_3_t"
}
layer {
name: "pool4_t"
type: "Pooling"
bottom: "conv4_3_t"
top: "pool4_t"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "conv5_1_t"
type: "Convolution"
bottom: "pool4_t"
top: "conv5_1_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
dilation:
}
}
layer {
name: "relu5_1_t"
type: "ReLU"
bottom: "conv5_1_t"
top: "conv5_1_t"
}
layer {
name: "conv5_2_t"
type: "Convolution"
bottom: "conv5_1_t"
top: "conv5_2_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
dilation:
}
}
layer {
name: "relu5_2_t"
type: "ReLU"
bottom: "conv5_2_t"
top: "conv5_2_t"
}
layer {
name: "conv5_3_t"
type: "Convolution"
bottom: "conv5_2_t"
top: "conv5_3_t"
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
pad:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.0
}
dilation:
}
}
layer {
name: "relu5_3_t"
type: "ReLU"
bottom: "conv5_3_t"
top: "conv5_3_t"
} layer {
name: "conv5_3_m"
type: "Convolution"
bottom: "conv5_3"
top: "conv5_3_m"
propagate_down: true
param {
lr_mult:
decay_mult:
}
param {
lr_mult:
decay_mult:
}
convolution_param {
num_output:
kernel_size:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value:
}
}
} layer {
name: "relu5_3_m"
type: "ReLU"
bottom: "conv5_3_m"
top: "conv5_3_m"
} layer {
name: "roi_pool_t"
type: "ROIPooling"
bottom: "conv5_3_t"
bottom: "label"
top: "pool_t"
roi_pooling_param {
pooled_w:
pooled_h:
}
propagate_down: false
propagate_down: false
}
layer {
name: "roi_pool_s"
type: "ROIPooling"
bottom: "conv5_3_m"
bottom: "label"
top: "pool_s"
roi_pooling_param {
pooled_w:
pooled_h:
}
propagate_down: true
propagate_down: false
} layer {
name: "mimic_loss"
type: "EuclideanLoss"
bottom: "pool_t"
bottom: "pool_s"
top: "mimic_loss"
propagate_down: false
propagate_down: true
loss_weight:
include {
phase: TRAIN
}
}

refinedet网络结构的更多相关文章

  1. RefineDet算法笔记

    ---恢复内容开始--- 一.创新点 针对two-stage的速度慢以及one-stage精度不足提出的方法,refinedet 包括三个核心部分:使用TCB来转换ARM的特征,送入ODM中进行检测: ...

  2. 论文阅读 | RefineDet:Single-Shot Refinement Neural Network for Object Detection

    论文链接:https://arxiv.org/abs/1711.06897 代码链接:https://github.com/sfzhang15/RefineDet 摘要 RefineDet是CVPR ...

  3. 目标检测之RefineDet

    RefineDet 一.相关背景 中科院自动化所最新成果,CVPR 2018 <Single-Shot Refinement Neural Network for Object Detectio ...

  4. Sparse Filtering 学习笔记(一)网络结构与特征矩阵

      Sparse Filtering 是一个用于提取特征的无监督学习算法,与通常特征学习算法试图建模训练数据的分布的做法不同,Sparse Filtering 直接对训练数据的特征分布进行分析,在所谓 ...

  5. 深度神经网络结构以及Pre-Training的理解

    Logistic回归.传统多层神经网络 1.1 线性回归.线性神经网络.Logistic/Softmax回归 线性回归是用于数据拟合的常规手段,其任务是优化目标函数:$h(\theta )=\thet ...

  6. 受限玻尔兹曼机(RBM)学习笔记(二)网络结构

      去年 6 月份写的博文<Yusuke Sugomori 的 C 语言 Deep Learning 程序解读>是囫囵吞枣地读完一个关于 DBN 算法的开源代码后的笔记,当时对其中涉及的算 ...

  7. OpenWrt网络结构

    原文链接:http://www.freezhongzi.info/?p=104 OpenWrt网络结构 OpenWrt的网络配置很丰富,在我看来几乎可以完成任何网络结构.下图为一个支持OpenWrt的 ...

  8. CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构有什么区别?

    https://www.zhihu.com/question/34681168 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?修改 CNN(卷积神经网 ...

  9. 神经网络结构在命名实体识别(NER)中的应用

    神经网络结构在命名实体识别(NER)中的应用 近年来,基于神经网络的深度学习方法在自然语言处理领域已经取得了不少进展.作为NLP领域的基础任务-命名实体识别(Named Entity Recognit ...

随机推荐

  1. python-OS.path.join()路径拼接

    os.path.join()函数: 第一个以”/”开头的参数开始拼接,之前的参数全部丢弃. 以上一种情况为先.在上一种情况确保情况下,若出现”./”开头的参数,会从”./”开头的参数的上一个参数开始拼 ...

  2. NodeJS 实现阿里云推送。

    虽然阿里云推送也有 NodeJS SDK ,只要在项目中引用 aliyun-sdk 就可以使用了.里面的推送功能了. 我在这里就不写怎么使用aliyun-sdk.给出来的DEMO是回调形式的.用起来有 ...

  3. (转)Centos7.2 给grub菜单做加密

    Centos7.2 给grub菜单做加密 原文:http://www.cnblogs.com/hanhy/articles/7274340.html#top 1.简述linux开机启动流程: 1) 启 ...

  4. 【程序员技术练级】学习一门脚本语言 python(二)遍历本地文件系统

    这篇将讲述怎么使用python来遍历本地文件系统,并把文件按文件大小从小到大排序的一个小例子 在这个例子中,主要会用到python内置的和OS模块的几个函数: os.walk() : 该方法用来遍历指 ...

  5. 8086键盘输入实验——《x86汇编语言:从实模式到保护模式》读书笔记07

    1.BIOS中断 我们可以为所有中断类型自定义中断处理过程,包括内部中断.硬件中断和软中断. BIOS中断,又称BIOS功能调用,主要是为了方便地使用最基本的硬件访问功能.通常,为了区分针对同一硬件的 ...

  6. MATLAB-R2015b-win64安装详细教程

    1.首先下载以下文件 链接:https://pan.baidu.com/s/1eRAOKZw 密码:5nkj 2.双击R2015b_win64.iso打开(win8,win8.1,win10均可直接打 ...

  7. 什么是PV,什么是UV,什么是IP. 流量统计的各种数据!

    pv流量 什么是PV? 解答:PV是指页面刷新的次数,每一次页面刷新,就算做一次pv流量. PV高一定代表来访者多吗? 解答:不一定如此,一般来说,PV与来访者的数量成正比,但是PV并不直接决定页面的 ...

  8. 在List中常用的linq表达式

    为了下面举例方便,先声明一个集合: public List<Model.Resume> GetResumeList() { var list = new List<Model.Res ...

  9. Vue1.0基础学习笔记整理

    最近一直在使用Vue.js开发项目,现将在学习过程中遇到的一些学习小细节总结如下: 1.只处理单次插值,今后的数据变化就不会再引起插值更新了 <span>This will never c ...

  10. Use the list and while to Build Shop car

    #Author: Gordonsalary = int(input("请输入你的工资:"))goods = [('0',"Iphone",5000),('1', ...