flink checkpoint 源码分析 (一)
转发请注明原创地址http://www.cnblogs.com/dongxiao-yang/p/8029356.html
checkpoint是Flink Fault Tolerance机制的重要构成部分,flink checkpoint的核心类名为org.apache.flink.runtime.checkpoint.CheckpointCoordinator。
定期产生的checkpoint事件
flink的checkpoint是由CheckpointCoordinator内部的一个timer线程池定时产生的,具体代码由ScheduledTrigger这个Runnable类启动。
private final class ScheduledTrigger implements Runnable { @Override
public void run() {
try {
triggerCheckpoint(System.currentTimeMillis(), true);
}
catch (Exception e) {
LOG.error("Exception while triggering checkpoint.", e);
}
}
}
整个triggerCheckpoint方法大致分为三个部分:
1 环境前置检查
// Sanity check
if (props.externalizeCheckpoint() && targetDirectory == null) {
throw new IllegalStateException("No target directory specified to persist checkpoint to.");
} // make some eager pre-checks
synchronized (lock) {
// abort if the coordinator has been shutdown in the meantime
if (shutdown) {
return new CheckpointTriggerResult(CheckpointDeclineReason.COORDINATOR_SHUTDOWN);
} // Don't allow periodic checkpoint if scheduling has been disabled
if (isPeriodic && !periodicScheduling) {
return new CheckpointTriggerResult(CheckpointDeclineReason.PERIODIC_SCHEDULER_SHUTDOWN);
} // validate whether the checkpoint can be triggered, with respect to the limit of
// concurrent checkpoints, and the minimum time between checkpoints.
// these checks are not relevant for savepoints
if (!props.forceCheckpoint()) {
// sanity check: there should never be more than one trigger request queued
if (triggerRequestQueued) {
LOG.warn("Trying to trigger another checkpoint while one was queued already");
return new CheckpointTriggerResult(CheckpointDeclineReason.ALREADY_QUEUED);
} // if too many checkpoints are currently in progress, we need to mark that a request is queued
if (pendingCheckpoints.size() >= maxConcurrentCheckpointAttempts) {
triggerRequestQueued = true;
if (currentPeriodicTrigger != null) {
currentPeriodicTrigger.cancel(false);
currentPeriodicTrigger = null;
}
return new CheckpointTriggerResult(CheckpointDeclineReason.TOO_MANY_CONCURRENT_CHECKPOINTS);
} // make sure the minimum interval between checkpoints has passed
final long earliestNext = lastCheckpointCompletionNanos + minPauseBetweenCheckpointsNanos;
final long durationTillNextMillis = (earliestNext - System.nanoTime()) / 1_000_000; if (durationTillNextMillis > 0) {
if (currentPeriodicTrigger != null) {
currentPeriodicTrigger.cancel(false);
currentPeriodicTrigger = null;
}
// Reassign the new trigger to the currentPeriodicTrigger
currentPeriodicTrigger = timer.scheduleAtFixedRate(
new ScheduledTrigger(),
durationTillNextMillis, baseInterval, TimeUnit.MILLISECONDS); return new CheckpointTriggerResult(CheckpointDeclineReason.MINIMUM_TIME_BETWEEN_CHECKPOINTS);
}
}
} // check if all tasks that we need to trigger are running.
// if not, abort the checkpoint
Execution[] executions = new Execution[tasksToTrigger.length];
for (int i = 0; i < tasksToTrigger.length; i++) {
Execution ee = tasksToTrigger[i].getCurrentExecutionAttempt();
if (ee != null && ee.getState() == ExecutionState.RUNNING) {
executions[i] = ee;
} else {
LOG.info("Checkpoint triggering task {} is not being executed at the moment. Aborting checkpoint.",
tasksToTrigger[i].getTaskNameWithSubtaskIndex());
return new CheckpointTriggerResult(CheckpointDeclineReason.NOT_ALL_REQUIRED_TASKS_RUNNING);
}
} // next, check if all tasks that need to acknowledge the checkpoint are running.
// if not, abort the checkpoint
Map<ExecutionAttemptID, ExecutionVertex> ackTasks = new HashMap<>(tasksToWaitFor.length); for (ExecutionVertex ev : tasksToWaitFor) {
Execution ee = ev.getCurrentExecutionAttempt();
if (ee != null) {
ackTasks.put(ee.getAttemptId(), ev);
} else {
LOG.info("Checkpoint acknowledging task {} is not being executed at the moment. Aborting checkpoint.",
ev.getTaskNameWithSubtaskIndex());
return new CheckpointTriggerResult(CheckpointDeclineReason.NOT_ALL_REQUIRED_TASKS_RUNNING);
}
}
上面的代码主要在生成一个chepoint之前进行了一些pre-checks,包括checkpoint的targetDirectory、正在进行中的pendingCheckpoint数量上限、前后两次checkpoint间隔是否过小、以及下游与checkpoint相关tasks是否存活等检测,任意一个条件不满足的都不会执行真正的checkpoint动作。
2 生成pendingcheckpoint
final long checkpointID;
try {
// this must happen outside the coordinator-wide lock, because it communicates
// with external services (in HA mode) and may block for a while.
checkpointID = checkpointIdCounter.getAndIncrement();
}
catch (Throwable t) {
int numUnsuccessful = numUnsuccessfulCheckpointsTriggers.incrementAndGet();
LOG.warn("Failed to trigger checkpoint (" + numUnsuccessful + " consecutive failed attempts so far)", t);
return new CheckpointTriggerResult(CheckpointDeclineReason.EXCEPTION);
} final PendingCheckpoint checkpoint = new PendingCheckpoint(
job,
checkpointID,
timestamp,
ackTasks,
props,
targetDirectory,
executor); if (statsTracker != null) {
PendingCheckpointStats callback = statsTracker.reportPendingCheckpoint(
checkpointID,
timestamp,
props); checkpoint.setStatsCallback(callback);
} // schedule the timer that will clean up the expired checkpoints
final Runnable canceller = new Runnable() {
@Override
public void run() {
synchronized (lock) {
// only do the work if the checkpoint is not discarded anyways
// note that checkpoint completion discards the pending checkpoint object
if (!checkpoint.isDiscarded()) {
LOG.info("Checkpoint " + checkpointID + " expired before completing."); checkpoint.abortExpired();
pendingCheckpoints.remove(checkpointID);
rememberRecentCheckpointId(checkpointID); triggerQueuedRequests();
}
}
}
};
pendingcheckpoint表示一个待处理的检查点,每个pendingcheckpoint标有一个全局唯一的递增checkpointID,并声明了一个canceller用于后续超时情况下的checkpoint清理用于释放资源。
// re-acquire the coordinator-wide lock
synchronized (lock) {
// since we released the lock in the meantime, we need to re-check
// that the conditions still hold.
if (shutdown) {
return new CheckpointTriggerResult(CheckpointDeclineReason.COORDINATOR_SHUTDOWN);
}
else if (!props.forceCheckpoint()) {
if (triggerRequestQueued) {
LOG.warn("Trying to trigger another checkpoint while one was queued already");
return new CheckpointTriggerResult(CheckpointDeclineReason.ALREADY_QUEUED);
} if (pendingCheckpoints.size() >= maxConcurrentCheckpointAttempts) {
triggerRequestQueued = true;
if (currentPeriodicTrigger != null) {
currentPeriodicTrigger.cancel(false);
currentPeriodicTrigger = null;
}
return new CheckpointTriggerResult(CheckpointDeclineReason.TOO_MANY_CONCURRENT_CHECKPOINTS);
} // make sure the minimum interval between checkpoints has passed
final long earliestNext = lastCheckpointCompletionNanos + minPauseBetweenCheckpointsNanos;
final long durationTillNextMillis = (earliestNext - System.nanoTime()) / 1_000_000; if (durationTillNextMillis > 0) {
if (currentPeriodicTrigger != null) {
currentPeriodicTrigger.cancel(false);
currentPeriodicTrigger = null;
} // Reassign the new trigger to the currentPeriodicTrigger
currentPeriodicTrigger = timer.scheduleAtFixedRate(
new ScheduledTrigger(),
durationTillNextMillis, baseInterval, TimeUnit.MILLISECONDS); return new CheckpointTriggerResult(CheckpointDeclineReason.MINIMUM_TIME_BETWEEN_CHECKPOINTS);
}
} LOG.info("Triggering checkpoint " + checkpointID + " @ " + timestamp); pendingCheckpoints.put(checkpointID, checkpoint); ScheduledFuture<?> cancellerHandle = timer.schedule(
canceller,
checkpointTimeout, TimeUnit.MILLISECONDS); if (!checkpoint.setCancellerHandle(cancellerHandle)) {
// checkpoint is already disposed!
cancellerHandle.cancel(false);
}
pendingcheckpoint在正式执行前还会再执行一遍前置检查,主要等待完成的检查点数量是否过多以及前后两次完成的检查点间隔是否过短等问题,这些检查都通过后,会把之前定义好的cancller注册到timer线程池,如果等待时间过长会主动回收checkpoint的资源。
3 启动checkpoint执行
发送这个checkpoint的checkpointID和timestamp到各个对应的executor,也就是给各个TaskManger发一个TriggerCheckpoint类型的消息。
CheckpointOptions checkpointOptions;
if (!props.isSavepoint()) {
checkpointOptions = CheckpointOptions.forCheckpoint();
} else {
checkpointOptions = CheckpointOptions.forSavepoint(targetDirectory);
} // send the messages to the tasks that trigger their checkpoint
for (Execution execution: executions) {
execution.triggerCheckpoint(checkpointID, timestamp, checkpointOptions);
} numUnsuccessfulCheckpointsTriggers.set(0);
return new CheckpointTriggerResult(checkpoint);
public void triggerCheckpoint(long checkpointId, long timestamp, CheckpointOptions checkpointOptions) {
final SimpleSlot slot = assignedResource; if (slot != null) {
final TaskManagerGateway taskManagerGateway = slot.getTaskManagerGateway(); taskManagerGateway.triggerCheckpoint(attemptId, getVertex().getJobId(), checkpointId, timestamp, checkpointOptions);
} else {
LOG.debug("The execution has no slot assigned. This indicates that the execution is " +
"no longer running.");
}
}
@Override
public void triggerCheckpoint(
ExecutionAttemptID executionAttemptID,
JobID jobId,
long checkpointId,
long timestamp,
CheckpointOptions checkpointOptions) { Preconditions.checkNotNull(executionAttemptID);
Preconditions.checkNotNull(jobId); actorGateway.tell(new TriggerCheckpoint(jobId, executionAttemptID, checkpointId, timestamp, checkpointOptions));
}
其中,for (Execution execution: executions) 这里面的executions里面是所有的输入节点,也就是flink source节点,所以checkpoint这些barrier 时间首先从jobmanager发送给了所有的source task
JobCheckpointingSettings settings = new JobCheckpointingSettings(
triggerVertices,
ackVertices,
commitVertices,
new CheckpointCoordinatorConfiguration(
interval,
cfg.getCheckpointTimeout(),
cfg.getMinPauseBetweenCheckpoints(),
cfg.getMaxConcurrentCheckpoints(),
retentionAfterTermination,
isExactlyOnce),
serializedStateBackend,
serializedHooks); jobGraph for (JobVertex vertex : jobVertices.values()) {
if (vertex.isInputVertex()) {
triggerVertices.add(vertex.getID());
}
commitVertices.add(vertex.getID());
ackVertices.add(vertex.getID());
}
flink checkpoint 源码分析 (一)的更多相关文章
- flink checkpoint 源码分析 (二)
转发请注明原创地址http://www.cnblogs.com/dongxiao-yang/p/8260370.html flink checkpoint 源码分析 (一)一文主要讲述了在JobMan ...
- Flink源码阅读(二)——checkpoint源码分析
前言 在Flink原理——容错机制一文中,已对checkpoint的机制有了较为基础的介绍,本文着重从源码方面去分析checkpoint的过程.当然本文只是分析做checkpoint的调度过程,只是尽 ...
- flink-connector-kafka consumer checkpoint源码分析
转发请注明原创地址:http://www.cnblogs.com/dongxiao-yang/p/7700600.html <flink-connector-kafka consumer的top ...
- flink1.7 checkpoint源码分析
初始化state类 //org.apache.flink.streaming.runtime.tasks.StreamTask#initializeState initializeState(); p ...
- Flink的Job启动TaskManager端(源码分析)
前面说到了 Flink的JobManager启动(源码分析) 启动了TaskManager 然后 Flink的Job启动JobManager端(源码分析) 说到JobManager会将转化得到 ...
- [源码分析] 从源码入手看 Flink Watermark 之传播过程
[源码分析] 从源码入手看 Flink Watermark 之传播过程 0x00 摘要 本文将通过源码分析,带领大家熟悉Flink Watermark 之传播过程,顺便也可以对Flink整体逻辑有一个 ...
- [源码分析] 从实例和源码入手看 Flink 之广播 Broadcast
[源码分析] 从实例和源码入手看 Flink 之广播 Broadcast 0x00 摘要 本文将通过源码分析和实例讲解,带领大家熟悉Flink的广播变量机制. 0x01 业务需求 1. 场景需求 对黑 ...
- Flink源码分析 - 源码构建
原文地址:https://mp.weixin.qq.com/s?__biz=MzU2Njg5Nzk0NQ==&mid=2247483692&idx=1&sn=18cddc1ee ...
- 从flink-example分析flink组件(3)WordCount 流式实战及源码分析
前面介绍了批量处理的WorkCount是如何执行的 <从flink-example分析flink组件(1)WordCount batch实战及源码分析> <从flink-exampl ...
随机推荐
- 【数论】【筛法求素数】CODEVS 1462 素数和
好吧……我不会欧拉筛也就罢了…… 傻逼筛法竟然这么长时间以来 一直RE ……源头竟然是 int 爆了. #include<cstdio> #include<algorithm> ...
- 【树链剖分】【线段树】bzoj2157 旅游
#include<cstdio> #include<algorithm> using namespace std; #define INF 2147483647 #define ...
- 【分块】【树状数组】bzoj3744 Gty的妹子序列
离散化,分块. 预处理出:ans[i][j] 第i块到第j块的逆序对数. f[i][j] 第1~i块中大于j的数的个数. g[i][j] 第1~j块中小于j的数的个数. 每次询问时对于整块部分可以O( ...
- java 面向接口编程的理解
初学者可能在学习中会有很多疑惑,为什么要这样,明明可以那样实现,这样做的好处又是什么? 可能会的人觉得很简单很容易理解,甚至可能觉得问的问题很智障,但对于小白来说可能是苦思冥想都不得其解的. 自己身为 ...
- 指定等级 Exercise07_01
import java.util.Scanner; /** * @author 冰樱梦 * 时间:2018年下半年 * 题目:指定等级 * */ public class Exercise07_01 ...
- 工作流Activiti新手入门学习路线整理
写在前面: 最近项目中使用到了工作流,虽然此部分不是自己需要完成的,但是也涉及到了要调用写的接口.正好有时间,就了解下,以便之后能在其他项目中用到时,不至于什么都不知道什么都不了解. 这里就主要整理下 ...
- 微服务之SpringCloud实战(二):SpringCloud Eureka服务治理
服务治理 SpringCloud Eureka是SpringCloud Netflix微服务套件的一部分,它基于Netflix Eureka做了二次封装,主要完成微服务的服务治理功能,SpringCl ...
- 我是如何给discuz模板做语法高亮的/vs code/textmate
本人一直做ASP.NET开发,近期接到任务要用Discuz开发一个社区,第一次接触PHP,PHP灵活的语法,天生的模块化,各种语法糖深深的震惊了我,我从内心深处感受到了PHP是最牛逼的语言!!! 好了 ...
- SQL Server DBA 文章:116篇 --DBA_Huangzj
http://blog.csdn.net/DBA_Huangzj/article/category/1133081
- redis_安装及使用
一.文档资料 1.官方网站:http://redis.io/ 2.官方文档:http://redis.io/documentation 3.常用命令文档:http: ...