直接上lucas定理,可以得到$\binom nm=1$等价于$m$是$n$的子集(二进制)

因为数字两两不同,所以设$f_i$表示以$i$开头的满足要求的序列有多少个,转移就是$f_i\gets f_j+1(j\subset i,\text{pos}_j\gt\text{pos}_i)$,除了以$j$开头的子序列还可以单独把$j$接在$i$后

#include<stdio.h>
const int mod=1000000007,N=233334;
void inc(int&a,int b){(a+=b)%=mod;}
int p[N],f[N];
int main(){
	int n,i,j,s;
	scanf("%d",&n);
	for(i=1;i<=n;i++){
		scanf("%d",&j);
		p[j]=i;
	}
	s=0;
	for(i=1;i<N;i++){
		if(p[i]){
			for(j=i&(i-1);j;j=(j-1)&i){
				if(p[j]>p[i])inc(f[i],f[j]+1);
			}
			inc(s,f[i]);
		}
	}
	printf("%d",s);
}

[UOJ300]吉夫特的更多相关文章

  1. BZOJ4903 UOJ300 CTSC2017 吉夫特 【Lucas定理】

    BZOJ4903 UOJ300 CTSC2017 吉夫特 弱弱地放上题目链接 Lucas定理可以推一推,发现C(n,m)是奇数的条件是n" role="presentation&q ...

  2. 【BZOJ4903/UOJ300】【CTSC2017】吉夫特

    Description 传送门 ​ 简述题意:给一个序列,询问有多少子序列满足其中不会出现\(a\choose b\)是偶数的情况,其中\(a\)在\(b\)前面. Solution 首先探究组合数的 ...

  3. [UOJ300][CTSC2017]吉夫特

    uoj bzoj luogu sol 根据\(Lucas\)定理,\(\binom nm \mod 2=\binom{n\%2}{m\%2}\times\binom{n/2}{m/2}\mod 2\) ...

  4. 【bzoj4903/uoj300】[CTSC2017]吉夫特 数论+状压dp

    题目描述 给出一个长度为 $n$ 的序列,求所有长度大于等于2的子序列个数,满足:对于子序列中任意两个相邻的数 $a$ 和 $b$ ($a$ 在 $b$ 前面),${a\choose b}\mod 2 ...

  5. 【BZOJ4903】【UOJ#300】吉夫特(卢卡斯定理,动态规划)

    [BZOJ4903][UOJ#300]吉夫特(卢卡斯定理,动态规划) 题面 UOJ BZOJ:给的UOJ的链接...... 题解 首先模的质数更小了,直接给定了\(2\).当然是卢卡斯定理了啊. 考虑 ...

  6. 【BZOJ4903】【CTSC2017】吉夫特 [DP]

    吉夫特 Time Limit: 15 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description Input 第一行一个整数n. 接下 ...

  7. CTSC2017密钥、吉夫特

    自己是有多么sb. 密钥 大家都说这是一道普及-的题,一年前我做不起,我可以说我太弱啦,我就普及组水平,今年我还是做不起…… 看大佬题解都是:开个桶就好啦! 我:你在说什么…… 首先把环拉成链,倍长. ...

  8. 【CTSC2017】【BZOJ4903】吉夫特 卢卡斯定理 DP

    题目描述 给你一个长度为\(n\)的数列\(a\),求有多少个长度\(\geq 2\)的不上升子序列\(a_{b_1},a_{b_2},\ldots,a_{b_k}\)满足 \[ \prod_{i=2 ...

  9. [CTSC2017]吉夫特

    Description: 给定一个序列\(a_1,a_2,a_3...a_n\) 求有多少个不上升子序列: \(a_{b1},a_{b_2}...\) 满足 \(C_{a_{b1}}^{a_{b2}} ...

随机推荐

  1. BZOJ1191:超级英雄(二分图匹配)

    [HNOI2006]超级英雄Hero 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1191 Description: 现在电视台有一种节 ...

  2. LA2995 Image is everything

    蓝书P12 #include <cstdio> #include <cstring> #include <cmath> #include <algorithm ...

  3. Jquery Ajax异步上传

    <script> $(function(){ $('#filephoto').change(function(imgFile){ console.log(imgFile) var file ...

  4. HDFS之FileSystem

    package cn.hx.test; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.*; impo ...

  5. Spring - IoC(7): 延迟实例化

    默认情况下,Spring IoC 容器启动后,在初始化过程中,会以单例模式创建并配置所有使用 singleton 定义的 Bean 的实例.通常情况下,提前实例化 Bean 是可取的,因为这样在配置中 ...

  6. SpringMVC异常报406 (Not Acceptable)的解决办法

    使用SpsringMVC,使用restEasy调试,controller请求设置如下: @RequestMapping(value="/list",method=RequestMe ...

  7. bzoj4756 [Usaco2017 Jan]Promotion Counting

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4756 [题解] dsu on tree,树状数组直接上 O(nlog^2n) # inclu ...

  8. [BZOJ3261&BZOJ3166]可持久化trie树及其应用

    可持久化trie树 可持久化trie树现在想来是比较好理解的了,但却看了一个下午... 相当于对于每个状态建立一条链(或者说一棵trie),求解的时候只要让两个点按照相同的步子走然后看sum的大小关系 ...

  9. 【STSRM12】整除

    [题意]给定长度为n的序列A,求最长的区间满足区间内存在数字能整除区间所有数字,同时求所有方案.n<=5*10^5,Ai<2^31. [算法]数论??? [题解]首先一个区间的基准数一定是 ...

  10. bzoj 1088 DP

    我们可以用w[i][s]来表示到第i位的方案,s代表第i位和第i+1位是否有雷的二进制串,那么我们就可以根据每一位的雷的数量转移了. /******************************** ...