某考试 T2 orzcyr
非常nice的一道行列式的题目。
考虑如果没有路径不相交这个限制的话,那么这个题就是一个行列式:设 a[i][j] 为从编号第i小的源点到编号第j小的汇点的路径条数,那么矩阵a[][]的行列式就是的答案,因为行列式的定义就是给行一个列的排列,贡献就是所有a[i][p[i]]再乘上 (-1)^(p[] 这个排列的逆序对数).
但是路径不相交就很恶心。。。。根本没法分开算嘛。。。。
不过逆序对可是有一个特殊性质的: 如果把 p[i] 和 p[j] swap一下,那么这个排列的逆序对数的变化值一定是奇数。
这个不难证明,因为仅有权值和下标都在交换的两个数的中间的那些数会产生逆序对变化,但是变化都是双倍的,所以仅有 (p[i].p[j]) 造成了 +/- 1的影响是奇数。
然后我们可以发现两条相交的路径 (a,b) , (c,d) 我们把交点后面的路径 swap 一下,那么就是 (a,d) , (c,b)了,原理就是上述了。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<cstdlib>
#include<queue>
#include<ctime>
#define ll long long
using namespace std;
const int maxn=605;
int a[maxn][maxn],hd[maxn],num,f[maxn];
int to[maxn*100],ne[maxn*100],X,Y,d[maxn];
int id[maxn],od[maxn],n,m,p,dy[maxn];
int ans=1; inline void addline(int x,int y){ id[y]++,od[x]++,to[++num]=y,ne[num]=hd[x],hd[x]=num;}
inline int add(int x,int y){ x+=y; return x>=p?x-p:x;}
inline void ADD(int &x,int y){ x+=y; if(x>=p) x-=p;}
inline int mul(int x,int y,const int ha){ return x*(ll)y%ha;}
inline int ksm(int x,int y){
int an=1;
for(;y;y>>=1,x=mul(x,x,p)) if(y&1) an=mul(an,x,p);
return an;
} inline void build(int u){
queue<int> q; int x;
for(int i=1;i<=n;i++) if(!id[i]) q.push(i); memcpy(d,id,sizeof(id)); while(!q.empty()){
x=q.front(),q.pop();
// cout<<x<<' '<<f[x]<<endl;
for(int i=hd[x];i;i=ne[i]){
ADD(f[to[i]],f[x]);
if(!(--d[to[i]])) q.push(to[i]);
}
} for(int i=1;i<=n;i++) if(!od[i]) a[u][dy[i]]=f[i];
} inline void xy(){
/*
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++) printf("%d ",a[i][j]);
puts("");
}
*/ for(int i=1,inv,tmp;i<=n;i++){
if(!a[i][i]){
ans=p-ans;
for(int j=i+1;j<=n;j++) if(a[j][i]){
for(int k=i;k<=n;k++) swap(a[i][k],a[j][k]);
break;
}
} ans=mul(ans,a[i][i],p);
inv=ksm(a[i][i],p-2); for(int j=i+1;j<=n;j++) if(a[j][i]){
tmp=a[j][i]*(ll)inv%(const int)p;
for(int k=i;k<=n;k++) ADD(a[j][k],p-mul(a[i][k],tmp,p));
}
}
} inline void solve(){
for(int i=1;i<=n;i++) if(!od[i]) dy[i]=++Y;
for(int i=1;i<=n;i++) if(!id[i]){
memset(f,0,sizeof(f)),f[i]=1;
X++,build(X);
} /*
for(int i=1;i<=X;i++){
for(int j=1;j<=X;j++) printf("%d ",a[i][j]);
puts("");
}
*/ n=X,xy();
} int main(){
freopen("orzcyr.in","r",stdin);
freopen("orzcyr.out","w",stdout); scanf("%d%d%d",&n,&m,&p); int uu,vv;
while(m--) scanf("%d%d",&uu,&vv),addline(uu,vv); solve(); printf("%d\n",ans);
// cout<<X<<' '<<Y<<endl;
return 0;
}
某考试 T2 orzcyr的更多相关文章
- 9.13 考试 T2 区间
删区间 题意: 给出一个长度为
- 某考试T2 frog
题目背景 无 题目描述 数轴上有 n 只青蛙,分别编号为 1 到 n.青蛙 i 的初始位置的坐标为 xi. 它们准备进行如下形式的移动:每轮包括 m 次跳跃,第 i 次跳跃由青蛙 ai(1 < ...
- 某考试 T2 Tree
2 树 2.1 题目描述 给一棵n 个节点的树,节点分别编号为0 到n - 1.你可以通过如下的操作来修改这棵树:首先先删去树上的一条边,此时树会分裂为两个连通块,然后在两个连通块之间加上一条新的边使 ...
- 某考试 T2 yja
2.1 Description 在平面上找 n 个点, 要求这 n 个点离原点的距离分别为 r1, r2, ..., rn. 最大化这 n 个点构成的凸包面积, 凸包上的点的顺序任意. 2.2 Inp ...
- 题解 2020.10.24 考试 T2 选数
题目传送门 题目大意 见题面. 思路 本来以为zcx.pxj变强了,后来发现是SPJ出问题了...考试的时候感觉有点人均啊...结果自己还是只想出来一半. 我们假设 \(f(x)=(\lfloor\f ...
- 2019.3.7考试T2 离线数论??
$ \color{#0066ff}{ 题目描述 }$ 一天,olinr 在 luogu.org 刷题,一点提交,等了一分钟之后,又蛙又替. olinr 发动了他的绝招,说:"为啥啊???&q ...
- 2019.2.26考试T2 矩阵快速幂加速DP
\(\color{#0066ff}{题解 }\) 可以发现, 数据范围中的n特别小,容易想到状压 可以想到类似于状压DP的思路,按列进行转移 那么应该有3维,\(f[i][j][k]\)代表到第i列, ...
- 2019.2.10考试T2, 多项式求exp+生成函数
\(\color{#0066ff}{ 题目描述 }\) 为了减小文件大小,这里不写一堆题目背景了. 请写一个程序,输入一个数字N,输出N个点的森林的数量.点有标号. 森林是一种无向图,要求图中不能存在 ...
- 某考试 T2 Seg
Seg [问题描述]数轴上有n条线段,第i条线段的左端点是a[i],右端点是b[i].Bob发现1~2n共2n个整数点,每个点都是某条线段的端点.这些线段有如下两类特点:1 x y,表示第x条线段和第 ...
随机推荐
- Codeforces Round #478 C. Valhalla Siege
C. Valhalla Siege time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...
- codeforces 1060 B
https://codeforces.com/contest/1060/problem/B 题意:给你一个数C ,你要找到两个数A.B,使得A+B=C并且A的每个位的数的和最大,求最大的和是多少 题解 ...
- js 日期获去及格式化
原文地址:http://www.cnblogs.com/qinpengming/archive/2012/12/03/2800002.html Js获取当前日期时间及格式化操作 var myDate ...
- C# new override
A -> virtual Fun B : A -> override Fun C : B -> override Fun D : C -> new virtual Fun E ...
- php2go - Go 实现 PHP 常用内置函数
[转]http://www.syyong.com/Go/php2go-Use-Golang-to-implement-PHP-s-common-built-in-functions.html 使用Go ...
- spring boot修改内置容器tomcat的服务端口
方式一 在spring boot的web 工程中,可以使用内置的web container.有时需要修改服务端口,可以通过配置类和@Configuration注解来完成. // MyConfigura ...
- 【BZOJ3942】Censoring [KMP]
Censoring Time Limit: 10 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description 有一个S串和一个T串,长 ...
- [转载]解决clickonce不支持administer权限问题
转自ClickOnce deployment vs. requestedExecutionLevel = requireAdministrator ClickOnce方式部署应用简单方便,估计很多人都 ...
- php常用的系统函数
字符串函数 strlen:获取字符串长度,字节长度 substr_count 某字符串出现的次数 substr:字符串截取,获取字符串(按照字节进行截取) mb_strlenmb_substr str ...
- DELPHI 参数前缀的使用
传值参数传值参数可在过程内部修改,但过程返回时该修改不会反映出来.不加任何前缀,就表示该参数为传值参数.Procedure Foo( I : Integer );I 的值被传递到Foo 过程.当Foo ...