题目传送门

题目大意:有n*n个格子,你需要放置k个国王使得它们无法互相攻击,每个国王的攻击范围为上下左走,左上右上左下右下,共8个格子,求最多的方法数

看到题目,是不是一下子就想到了玉米田那道题,如果不会的话可以去我另外一篇博客里面看看,里面有玉米田详细解答方案.

好,回到这道题.首先,看到数据范围,很自然的想到状压dp.题目要求我们已经放了国王格子的上下左右以及左上右上左下右下都不能放国王,那么我们就可以通过上一行的状态来更新这一行的状态,即dp[i][state]表示到第i行状态为state满足条件的个数,但是这样很显然是不够的,因为题目只让我们选k个,所以还要加一维来储存个数,即dp[i][state][j]表示到第i行状态为state已经放置了j个国王的满足条件的个数

dp方程应该很好想吧,和玉米田差不多

dp[i+1][state][j]+=dp[i][state'][k]

现在来分步操作一下

首先是预处理,我们可以把左右两边均无1理解为一个状态没有相邻的1

void init()
{
for(lol i=;i<(<<n);i++)
if(!(i&(i<<)))//如果这个状态没有相邻的1
{
can[++cnt]=i;//保存下来
lol c=;
for(lol j=;j<=n;j++) if(i&(<<(j-))) c++;//统计这个状态有多少个1
sum[cnt]=c;
}
}

然后就是初始化第1行

for(lol i=;i<=cnt;i++)
{
dp[][can[i]][sum[i]]=;
}

dp过程,题目要求左上右上均无1,那么我们可以把上一行的状态分别右移和左移,再相与,若为0则代表这个状态合法,还有就是转移状态的时候,sum[k]不能直接+=sum[j],然后dp[i+1][can[k]][sum[k]]+=dp[i][can[j]][sum[j]]因为要枚举很多次,这样sum[k]一直加下去会爆long long,所以改用for循环枚举

for(lol i=;i<n;i++)//枚举第1~m-1行
for(lol j=;j<=cnt;j++)//枚举第i行的状态
for(lol k=;k<=cnt;k++)//枚举第i+1的状态
if(!(can[j]&can[k]) && !(can[j]<<&can[k]) && !(can[j]>>&can[k]))//如果它对应的这一位以及左右都没有1
for(lol l=;l+sum[k]<=r;l++)//枚举这一个状态可以放多少个1
dp[i+][can[k]][l+sum[k]]+=dp[i][can[j]][l];//转移状态

然后就是统计最后结果了,因为题目要求我们选k个,而且最终的结果都保存在最后一行,所以枚举最后一行的状态就行了

完整版代码,个人感觉还是比较简洁易懂的

#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<cstring>
#define in(i) (i=read())
using namespace std;
typedef long long lol;
lol read()
{
lol ans=,f=;
char i=getchar();
while(i<''||i>'')
{
if(i=='-') f=-;
i=getchar();
}
while(i>=''&&i<='')
{
ans=(ans<<)+(ans<<)+i-'';
i=getchar();
}
return ans*f;
}
lol can[],dp[][<<][],sum[];
lol n,r,cnt,tot;
void init()
{
for(lol i=;i<(<<n);i++)
if(!(i&(i<<)))//如果这个状态没有相邻的1
{
can[++cnt]=i;//保存下来
lol c=;
for(lol j=;j<=n;j++) if(i&(<<(j-))) c++;//统计这个状态有多少个1
sum[cnt]=c;
}
}
int main()
{
lol ans=;
in(n);in(r);
init();
for(lol i=;i<=cnt;i++)
dp[][can[i]][sum[i]]=;
for(lol i=;i<n;i++)//枚举第1~m-1行
for(lol j=;j<=cnt;j++)//枚举第i行的状态
for(lol k=;k<=cnt;k++)//枚举第i+1的状态
if(!(can[j]&can[k]) && !(can[j]<<&can[k]) && !(can[j]>>&can[k]))//如果它对应的这一位以及左右都没有1
for(lol l=;l+sum[k]<=r;l++)//枚举这一个状态可以放多少个1
dp[i+][can[k]][l+sum[k]]+=dp[i][can[j]][l];//转移状态
for(lol i=;i<=cnt;i++)
ans+=dp[n][can[i]][r];//最后答案都在最后一行,记得开long long
printf("%lld\n",ans);
return ;
}

SCOI2005 互不侵犯 [状压dp]的更多相关文章

  1. BZOJ1087[SCOI2005]互不侵犯——状压DP

    题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 输入 只有一行,包含两个数N,K ( ...

  2. P1896 [SCOI2005]互不侵犯 状压dp

    正解:状压dp 解题报告: 看到是四川省选的时候我心里慌得一批TT然后看到难度之后放下心来觉得大概没有那么难 事实证明我还是too young too simple了QAQ难到爆炸TT我本来还想刚一道 ...

  3. [SCOI2005]互不侵犯 (状压$dp$)

    题目链接 Solution 状压 \(dp\) . \(f[i][j][k]\) 代表前 \(i\) 列中 , 已经安置 \(j\) 位国王,且最后一位状态为 \(k\) . 然后就可以很轻松的转移了 ...

  4. luogu1896 [SCOI2005]互不侵犯 状压DP

    题目大意 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子.( 1 <=N <=9, 0 ...

  5. NOI P1896 互不侵犯 状压DP

    题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 注:数据有加强(2018/4/25) ...

  6. _bzoj1087 [SCOI2005]互不侵犯King【dp】

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1087 令f(i, j, k)表示前i列,二进制状态为j,已经用了k个国王的方案数,则 f(i ...

  7. 洛谷——P1896 [SCOI2005]互不侵犯

    P1896 [SCOI2005]互不侵犯 状压DP入门题 状压DP一般需要与处理状态是否合法,节省时间 设定状态dp[i][j][k]表示第i行第j个状态选择国王数为k的方案数 $dp[i][j][n ...

  8. 状压DP概念 及例题(洛谷 P1896 互不侵犯)

    状压DP 就是状态压缩DP.所谓状态压缩,就是将一些复杂的状态压缩起来,一般来说是压缩为一个二进制数,用01来表示某一元素的状态. 比如一排灯泡(5个) 我们可以用一串二进制01串来表示他们的状态 1 ...

  9. BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3336  Solved: 1936[Submit][ ...

随机推荐

  1. C语言Windows程序开发—Windows窗口样式与常用控件样式【第04天】

    (一)Windows窗口(MDICLIENT)样式介绍 /* Windows窗口样式 */ WS_BORDER //带有边框的窗口 WS_CAPTION //带有标题栏的窗口 WS_CHILD //子 ...

  2. 算法竞赛入门经典-1.5.4 Q&A

    这小节考察实践能力,要求在不要查书.不要网上找答案,自己用实验的方法解决以下五个问题: 做这五道题时,好几道都没思路,违反了规则到网上找了一圈,居然没找到答案,于是打算写这篇博客.不知是否有更好的实践 ...

  3. ABAP CDS ON HANA-(8)算術式

    Arithmetic expression in CDS View Allowed Arithmetic operators in CDS view. CDS View- @AbapCatalog.s ...

  4. vue2018年5月报错No parser and no file path given

    mac电脑直接: rm -rf node_modules rm package-lock.json npm install npm install prettier@~1.12.1 执行完这四个命令, ...

  5. CSS3实现加载数据动画2

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  6. python语法图

  7. BeyondCompare3 提示许可证密钥已被撤销解决方法

    今天对比文件提示 许可证密钥已被撤销:3281-0350! 找过了几个注册码还是不行. 正确简单的解决方法: 1.找到 BCState.xml 文件 ​ 2.编辑器打开,删除<TCheckFor ...

  8. iOS URL加解密

    URL加解密 背景介绍 iOS 下URL加解密,项目使用AFNetworking 虽然是使用HTTPS,但是从安全方面考虑,在很多情况下还是需要对url的参数进行加密的. 接口如 https://19 ...

  9. 在 Ubuntu 16.04 LTS 上安装 Python 3.6.0

    原文连接:https://segmentfault.com/a/1190000007912666 最近 Python 3 发布了新版本 Python 3.6.0,好像又加入了不少黑魔法!- 由于暂时不 ...

  10. 虚拟现实-VR-UE4-认识UE4

    VR的火热,让每个人都想参与一下, 公司在展会上面搞了一个VR的Demo,关注度超出预期,使得公司高层决定来个VR项目 所以 关于UE4 百度百科地址:http://baike.baidu.com/l ...