题目

  1. Moving Pebbles Two players play the following game. At the beginning of the game they start with n (1<=n<=100000) piles of stones. At each step of the game, the player chooses a pile and remove at least one stone from this pile and move zero or more stones from this pile to any other pile that still has stones. A player loses if he has no more possible moves. Given the initial piles, determine who wins: the first player, or the second player, if both play perfectly. 给你N堆Stone,两个人玩游戏. 每次任选一堆,首先拿掉至少一个石头,然后移动任意个石子到任意堆中. 谁不能移动了,谁就输了…

输入格式

Each line of input has integers 0 < n <= 100000, followed by n positive integers denoting the initial piles.

输出格式

For each line of input, output “first player” if first player can force a win, or “second player”, if the second player can force a win.

输入样例

3 2 1 3

输出样例

first player

题解

博弈论的题目总是很神(shao)奇(nao)。。。。

但想清楚总是很简单

①根据博弈的套路,当石子堆两两配对,后手猥琐模仿先手,先手必败

②根据本题特点,石子可以拿取后自由移动;

1、若为奇数,一定不是两两配对,那么先手就可以取掉一点并移动使得堆数-1且两两配对

2、若为偶数,且不两两配对,那么先手可以通过一定操作使得两两配对

综上:只要一开始不是两两配对,先手必胜,否则必败

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u]; k != -1; k = ed[k].nxt)
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 1000000000;
inline int RD(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 1) + (out << 3) + c - '0'; c = getchar();}
return out * flag;
}
int A[maxn],n;
int main(){
n = RD();
if (n & 1) {puts("first player"); return 0;}
REP(i,n){
A[i] = RD();
if (i % 2 == 0 && A[i] != A[i - 1]) {puts("first player"); return 0;}
}
puts("second player");
return 0;
}

BZOJ1982 [Spoj 2021]Moving Pebbles 【博弈论】的更多相关文章

  1. Bzoj 1982: [Spoj 2021]Moving Pebbles 博弈论

    1982: [Spoj 2021]Moving Pebbles Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 130  Solved: 88[Submi ...

  2. BZOJ 1982: [Spoj 2021]Moving Pebbles [博弈论 对称]

    给你N堆Stone,两个人玩游戏. 每次任选一堆,首先拿掉至少一个石头,然后移动任意个石子到任意堆中. 谁不能移动了,谁就输了... 以前在poj做过已经忘记了... 构造对称,选最多的一堆往其他堆分 ...

  3. BZOJ 1982 [Spoj 2021]Moving Pebbles(博弈论)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1982 [题目大意] 两个人玩游戏. 每次任选一堆,首先拿掉至少一个石头, 然后移动任意 ...

  4. [BZOJ1982][POJ1740][Spoj 2021]Moving Pebbles|解题报告

    这道题的题意BZ和POJ上的都不大清楚... 大概就是给出n堆石子,以及初始每堆石子的个数 两个玩家交替操作,每个操作可以任意在一堆中取任意多的石子 然后再从这堆里拿若干个石子放到某个当前还存在的堆里 ...

  5. bzoj 1982: [Spoj 2021]Moving Pebbles【博弈论】

    必败状态是n为偶数并且数量相同的石子堆可以两两配对,因为这样后手可以模仿先手操作 其他状态一定可以由先手给后手一步拼出一个必败状态(用最大堆补) #include<iostream> #i ...

  6. BZOJ 1982 / Luogu SP2021: [Spoj 2021]Moving Pebbles (找平衡状态)

    这道题在论文里看到过,直接放论文原文吧 在BZOJ上是单组数据,而且数据范围符合,直接int读入排序就行了.代码: #include <cstdio> #include <algor ...

  7. [SPOJ2021] Moving Pebbles

    [SPOJ2021] Moving Pebbles 题目大意:给你\(N\)堆\(Stone\),两个人玩游戏. 每次任选一堆,首先拿掉至少一个石头,然后移动任意个石子到任意堆中. 谁不能移动了,谁就 ...

  8. 题解 [SDOI2009]E&D/染色游戏/Moving Pebbles

    E&D 染色游戏 Moving Pebbles E&D 题目大意 给出 \(2n\) 堆石子,\(2i-1\) 和 \(2i\) 为一组.每次可以选择一组删掉其中一堆,然后从同一组另外 ...

  9. [bzoj1982]Moving Pebbles

    首先发现当n堆石子可以两两配对时,后手必胜,因为后手可以模仿先手那么当n堆石子不能两两配对时,先手必胜,因为先手可以做到让其两两配对,然后即先手必胜 这个东西用map维护即可 1 #include&l ...

随机推荐

  1. 一个简易的android浏览器。求指教!

    开发android的浏览器很简单吧,不过这浏览器倒是很简易.下面每一处代码都备注上注解了!废话不多说,下面直接上代码! 运行后界面   主界面的代码 activity_main.xml布局 <L ...

  2. Python实现多属性排序

    Python实现多属性排序 多属性排序:假如某对象有n个属性,那么先按某规则对属性a进行排序,在属性a相等的情况下再按某规则对属性b进行排序,以此类推. 现有对象Student: class Stud ...

  3. scala成长之路(6)函数入门

    众所周知,scala作为一门极客型的函数式编程语言,支持的特性包括: 函数拥有“一等公民”身份: 支持匿名函数(函数字面量) 支持高阶函数 支持闭包 部分应用函数 柯里化 首先需要指出,在scala中 ...

  4. 002---time & datetime

    time & datetime 时间模块 分类 时间戳 时间字符串 时间元祖 定义 UTC:格林威治时间,世界标准时间,中国(UTC + 8) 时间戳:1970-01-01 0:0:0 开始按 ...

  5. 基于vue来开发一个仿饿了么的外卖商城(一)

    一.准备工作 1.大前提:已安装好node. npm. vue. vue-cli.stylus(此项目使用stylus来编译) 2.开发软件:Google Chrome(建议安装插件vue-devto ...

  6. 炒鸡简单的javaScript的call和apply方法

    解释一 作者:杨志 链接:https://www.zhihu.com/question/20289071/answer/14644278 来源:知乎 著作权归作者所有.商业转载请联系作者获得授权,非商 ...

  7. android staido 断点遇到的坑

    今天排查数据布点问题,发现sd卡上面的文件莫名消失. 怎么可能?系统不可能删除你的文件,但是我调试,删除文件的代码, 一直都没有执行啊. 后来发现,子线程里面代码,android stadio 可能断 ...

  8. ip4addr_ntoa和不可重入函数

    在网络中,有一个转换IP地址到ASIIC字符串的函数,该函数的返回值所指向的ASIIC字符串驻留在静态内存中,所以该函数不可重入. 通俗的讲,在多任务系统中,一个任务执行在调用运行这个函数的时候,其他 ...

  9. 激活Windows Server 2008R2

    1. 用管理员身份运行mini-KMS_Activator_v1.053_ENG 2. 点击倒数第二个菜单Activation Windows VL 选择数字1 下一步选择Y 不管后面报不报错 3. ...

  10. python中socket、socketio、flask-socketio、WebSocket的区别与联系

    socket.socketio.flask-socketio.WebSocket的区别与联系 socket 是通信的基础,并不是一个协议,Socket是应用层与TCP/IP协议族通信的中间软件抽象层, ...