BZOJ1982 [Spoj 2021]Moving Pebbles 【博弈论】
题目
- Moving Pebbles Two players play the following game. At the beginning of the game they start with n (1<=n<=100000) piles of stones. At each step of the game, the player chooses a pile and remove at least one stone from this pile and move zero or more stones from this pile to any other pile that still has stones. A player loses if he has no more possible moves. Given the initial piles, determine who wins: the first player, or the second player, if both play perfectly. 给你N堆Stone,两个人玩游戏. 每次任选一堆,首先拿掉至少一个石头,然后移动任意个石子到任意堆中. 谁不能移动了,谁就输了…
输入格式
Each line of input has integers 0 < n <= 100000, followed by n positive integers denoting the initial piles.
输出格式
For each line of input, output “first player” if first player can force a win, or “second player”, if the second player can force a win.
输入样例
3 2 1 3
输出样例
first player
题解
博弈论的题目总是很神(shao)奇(nao)。。。。
但想清楚总是很简单
①根据博弈的套路,当石子堆两两配对,后手猥琐模仿先手,先手必败
②根据本题特点,石子可以拿取后自由移动;
1、若为奇数,一定不是两两配对,那么先手就可以取掉一点并移动使得堆数-1且两两配对
2、若为偶数,且不两两配对,那么先手可以通过一定操作使得两两配对
综上:只要一开始不是两两配对,先手必胜,否则必败
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u]; k != -1; k = ed[k].nxt)
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 1000000000;
inline int RD(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 1) + (out << 3) + c - '0'; c = getchar();}
return out * flag;
}
int A[maxn],n;
int main(){
n = RD();
if (n & 1) {puts("first player"); return 0;}
REP(i,n){
A[i] = RD();
if (i % 2 == 0 && A[i] != A[i - 1]) {puts("first player"); return 0;}
}
puts("second player");
return 0;
}
BZOJ1982 [Spoj 2021]Moving Pebbles 【博弈论】的更多相关文章
- Bzoj 1982: [Spoj 2021]Moving Pebbles 博弈论
1982: [Spoj 2021]Moving Pebbles Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 130 Solved: 88[Submi ...
- BZOJ 1982: [Spoj 2021]Moving Pebbles [博弈论 对称]
给你N堆Stone,两个人玩游戏. 每次任选一堆,首先拿掉至少一个石头,然后移动任意个石子到任意堆中. 谁不能移动了,谁就输了... 以前在poj做过已经忘记了... 构造对称,选最多的一堆往其他堆分 ...
- BZOJ 1982 [Spoj 2021]Moving Pebbles(博弈论)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1982 [题目大意] 两个人玩游戏. 每次任选一堆,首先拿掉至少一个石头, 然后移动任意 ...
- [BZOJ1982][POJ1740][Spoj 2021]Moving Pebbles|解题报告
这道题的题意BZ和POJ上的都不大清楚... 大概就是给出n堆石子,以及初始每堆石子的个数 两个玩家交替操作,每个操作可以任意在一堆中取任意多的石子 然后再从这堆里拿若干个石子放到某个当前还存在的堆里 ...
- bzoj 1982: [Spoj 2021]Moving Pebbles【博弈论】
必败状态是n为偶数并且数量相同的石子堆可以两两配对,因为这样后手可以模仿先手操作 其他状态一定可以由先手给后手一步拼出一个必败状态(用最大堆补) #include<iostream> #i ...
- BZOJ 1982 / Luogu SP2021: [Spoj 2021]Moving Pebbles (找平衡状态)
这道题在论文里看到过,直接放论文原文吧 在BZOJ上是单组数据,而且数据范围符合,直接int读入排序就行了.代码: #include <cstdio> #include <algor ...
- [SPOJ2021] Moving Pebbles
[SPOJ2021] Moving Pebbles 题目大意:给你\(N\)堆\(Stone\),两个人玩游戏. 每次任选一堆,首先拿掉至少一个石头,然后移动任意个石子到任意堆中. 谁不能移动了,谁就 ...
- 题解 [SDOI2009]E&D/染色游戏/Moving Pebbles
E&D 染色游戏 Moving Pebbles E&D 题目大意 给出 \(2n\) 堆石子,\(2i-1\) 和 \(2i\) 为一组.每次可以选择一组删掉其中一堆,然后从同一组另外 ...
- [bzoj1982]Moving Pebbles
首先发现当n堆石子可以两两配对时,后手必胜,因为后手可以模仿先手那么当n堆石子不能两两配对时,先手必胜,因为先手可以做到让其两两配对,然后即先手必胜 这个东西用map维护即可 1 #include&l ...
随机推荐
- Angular : 响应式编程, 组件间通信, 表单
Angular 响应式编程相关 ------------------------------------------------------------------------------------ ...
- Mysql错误积累001-load data导入文件数据出现1290错误
错误出现情景 在cmd中使用mysql命令,学生信息表添加数据.使用load data方式简单批量导入数据. 准备好文本数据: xueshengxinxi.txt 文件 数据之间以tab键进行分割 ...
- python基础之进程间通信、进程池、协程
进程间通信 进程彼此之间互相隔离,要实现进程间通信(IPC),multiprocessing模块支持两种形式:队列和管道,这两种方式都是使用消息传递的. 进程队列queue 不同于线程queue,进程 ...
- 用 Qt 控制 Nikon 显微镜的电动物镜转盘
用 Qt 控制 Nikon 显微镜的电动物镜转盘 最近的一个项目,用到了一台 Nikon 的金相显微镜,并且配了个电动的物镜转盘.为了控制这个电动物镜转盘,我折腾了差不多有4-5天.中间遇到了各种问题 ...
- 2457: [BeiJing2011]双端队列
2457: [BeiJing2011]双端队列 链接 很奇妙的转化. 题目要求最后的所有序列也是有序的,所以可以求出最后的序列(即排序后的序列),然后分成许多份,要求每一份都是一个双端序列,求最少分成 ...
- Word中使用宏调整表格
Dim i As Integer For i = 1 To Selection.Tables.Count Selection.Tables(i).Columns(9).Delete Selecti ...
- 你了解的UIKit结构?
- 还原T4模板执行前的警告对话框
T4模板在保存的时候都会弹出个对话框,确认是否立即执行,大部分情况下我是不想立即执行的,所以一般都点Cancel,只有想执行的时候才点OK. 今天操作的时候不小心勾选了“Do not show thi ...
- 《剑指offer》题解
有段时间准备找工作,囫囵吞枣地做了<剑指offer>提供的编程习题,下面是题解收集. 当初没写目录真是个坏习惯(-_-)||,自己写的东西都要到处找. 提交的源码可以在此repo中找到:h ...
- 【紫书】(UVa12563)Jin Ge Jin Qu hao
继续战dp.不提. 题意分析 这题说白了就是一条01背包问题,因为对于给定的秒数你只要-1s(emmmmm)然后就能当01背包做了——那1s送给劲歌金曲(?).比较好玩的是这里面dp状态的保存——因为 ...