题目

题目链接

剑指offer:斐波那契数列

题目描述

大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0)。

n<=39

解题思路

斐波那契数列属于经典的递归问题,对于这题的求解,我们首先要知道斐波那契数列的状态转移式,即f[n]=f[n-1]+f[n-2],且在n=1或2时,f[n]=1。

在理解基础的状态转移式后,最容易想到的便是递归调用,但很遗憾,这样算法的时间复杂度往往达不到要求。

仔细观察后可以发现,每次求解的f[n]都在之后两个f[n]的求解中起作用,因此我们可以将其保存,这样能够避免重复计算,降低算法的时间复杂度;同时,因为只在后续两个f[n]的求解中起作用,因此只需要保存两个f[n]的值即可。

具体代码

  1. class Solution {
  2. public:
  3. int Fibonacci(int n) {
  4. if (n < 0)
  5. return -1;
  6. if (n <= 1)
  7. return n;
  8. int sum = 1; // f[n-1]
  9. int pre = 0; // f[n-2]
  10. for (int i = 2; i <= n; ++i) {
  11. // 更新f[n-1]和f[n-2]
  12. sum = sum + pre;
  13. pre = sum - pre;
  14. }
  15. return sum;
  16. }
  17. };

剑指offer:斐波那契数列的更多相关文章

  1. 剑指Offer 斐波那契数列

    题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项. n<=39 思路: 不考虑递归 用递推的思路 AC代码: class Solution { public ...

  2. 剑指Offer——斐波那契数列

    题目描述: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项.n<=39 分析: 递归解法肯定相当耗时. 因为当n=4时,程序是这样子递归运算的:Fibonacci( ...

  3. 用js刷剑指offer(斐波那契数列)

    牛客网链接 下面介绍一下什么是斐波那契数列 js代码 知道了通项公式,那代码就非常简单了 function Fibonacci(n) { // write code here let pre = 1 ...

  4. [剑指OFFER] 斐波那契数列- 跳台阶 变态跳台阶 矩形覆盖

    跳台阶 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. class Solution { public: int jumpFloor(int number) ...

  5. 剑指offer7: 斐波那契数列第n项(从0开始,第0项为0)

    1. 题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0).n<=39 2. 思路和方法 斐波那契数列(Fibonacci sequen ...

  6. 剑指offer--4.斐波那契数列

    int最大范围(有符号情况下,从第0项0开始)能取到第46项1836311903,47项溢出 时间限制:1秒 空间限制:32768K 热度指数:473928 题目描述 大家都知道斐波那契数列,现在要求 ...

  7. 剑指Offer-7.斐波那契数列(C++/Java)

    题目: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). n<=39 分析: 斐波那契数列是0,1,1,2,3,5,8,13...也就是当前 ...

  8. 剑指Offer07 斐波那契数列

    /************************************************************************* > File Name: 07_Fibona ...

  9. [剑指Offer]10-斐波那契数列(循环)-Java

    题解 使用循环,时间复杂度O(n). 相关 跳台阶:f(n)=f(n-1)+f(n-2) 变态跳台阶:f(n)=2*f(n-1) 矩形覆盖:f(n)=f(n-1)+f(n-2) 全部用循环代替递归,使 ...

  10. 剑指offer_斐波那契数列

    package solution; public class Fibonacci { /* * f(n) = f(n-1) + f(n-2) n>1 * f(0) = 0 * f(1) = 1 ...

随机推荐

  1. 示例浅谈PHP与手机APP开发,即API接口开发

    示例浅谈PHP与手机APP开发,即API接口开发 API(Application Programming Interface,应用程序接口)架构,已经成为目前互联网产品开发中常见的软件架构模式,并且诞 ...

  2. (转)Maven POM中的各种scope的行为总结

    原地址:https://blog.csdn.net/cnweike/article/details/52221410 compile:默认的scope.任何定义在compile scope下的依赖将会 ...

  3. idea中创建web项目搭建Hibernate框架连接oracle数据库

    hibernate框架 hibernate是数据化持久工具,也是一个开源代码的ORM解决方案.hibernate内部封装了通过jdbc访问数据库的操作,向商场应用提供面向对象的数据访问api. hib ...

  4. Post 和 Get的区别?

    Post方法: 1. POST 请求的数据不会被缓存 2. Post请求的内容放置在HTML header中,用户是看不到这个过程的.所以是比较安全的 3. Post请求的数据大小没有限制 Get方法 ...

  5. ECSHOP快递单号查询插件圆通V8.2专版

    本ECSHOP快递物流单号跟踪插件提供国内外近2000家快递物流订单单号查询服务例如申通快递.顺丰快递.圆通快递.EMS快递.汇通快递.宅急送快递.德邦物流.百世快递.汇通快递.中通快递.天天快递等知 ...

  6. php开发aes加密总结

    <?php class Aes { /** * aes 加密 解密类库 * @by singwa * Class Aes *说明:本类只适用于加密字符串 * */ private $key = ...

  7. jenkins+maven+docker集成java发布(一)自动发布

    JAVA项目持续集成发布 标签(空格分隔): java jenkins 微服务中持续集成自动发布是很重要的一个环节,将不同的模块应用自动部署到一台或者N台服务器中如果采用人工部署的方式不太现实 git ...

  8. Django的aggregate()和annotate()函数的区别

    aggregate() aggregate()为所有的QuerySet生成一个汇总值,相当于Count().返回结果类型为Dict. annotate() annotate()为每一个QuerySet ...

  9. python学习之对象的三大特性

    在面向对象程序设计中,对象可以看做是数据(特性)以及由一系列可以存取.操作这些数据的方法所组成的集合.编写代码时,我们可以将所有功能都写在一个文件里,这样也是可行的,但是这样不利于代码的维护,你总不希 ...

  10. 转译符,re模块,random模块

    一, 转译符 1.python 中的转译符 正则表达式中的内容在Python中就是字符串 ' \n ' : \ 转移符赋予了这个n一个特殊意义,表示一个换行符 ' \ \ n' :  \ \  表示取 ...