Description

小T与小L终于决定走在一起,他们不想浪费在一起的每一分每一秒,所以他们决定每天早上一同晨练来享受在一起的时光.

他们画出了晨练路线的草图,眼尖的小T发现可以用树来描绘这个草图.

他们不愿枯燥的每天从同一个地方开始他们的锻炼,所以他们准备给起点标号后顺序地从每个起点开始(第一天从起点一开始,第二天从起点二开始……). 而且他们给每条道路定上一个幸福的值.很显然他们每次出发都想走幸福值和最长的路线(即从起点到树上的某一点路径中最长的一条).

他们不愿再经历之前的大起大落,所以决定连续几天的幸福值波动不能超过M(即一段连续的区间并且区间的最大值最小值之差不超过M).他们想知道要是这样的话他们最多能连续锻炼多少天(hint:不一定从第一天一直开始连续锻炼)?

现在,他们把这个艰巨的任务交给你了!

Input

第一行包含两个整数N, M(M<=10^9).

第二至第N行,每行两个数字Fi , Di, 第i行表示第i个节点的父亲是Fi,且道路的幸福值是Di.

Output

最长的连续锻炼天数

Sample Input

3 2

1 1

1 3

Sample Output

3

数据范围:

50%的数据N<=1000

80%的数据N<=100 000

100%的数据N<=1000 000

Sol

第一问,每个点能到达的最长链无非就是要么往子树走,要么往父亲走再往上走,那么我们用\(u[i]\)和\(d[i]\)分别表示向上走和向下走的最长链,向下走的直接dfs即可,向上走的我们更新x的儿子的dp值的时候,我们记录x儿子中\(d[i]\)的最大值和次大值,如果这个儿子不是最大值,那么用最大值更新,否则用次大值更新。记得x儿子的初值是\(u[x]\)。

第二问我们开俩单调队列,维护递减的最大值和递增的最小值,加入一个元素的时候按照正常操作更新队列,之后我们要从队首弹出元素直到两者之差小于等于m,弹出队列的过程就是哪边更靠左,就把哪边弹出,然后维护一个pos表示答案能够延伸到的左端点,每次弹出的时候更新为\(q[l1/l2]+1\)。这样经过若干次迭代之后就能找到合法的最靠左的pos,然后用\(i-pos+1\)更新答案。

当然这题的范围是允许st表的,偷懒写st表也可以(模拟赛内存砍了一半所以写不了qwq)

Code

#include <bits/stdc++.h>
#define ll long long
using namespace std;
struct nod{int t;ll v;nod(int t=0,ll v=0):t(t),v(v){}};
vector<nod>e[1000005];
int n,x,q1[1000005],q2[1000005],l1=1,l2=1,r1,r2,g=1,ans;
ll m,y,u[1000005],d[1000005],a[1000005];
void dfs1(int x,int F){for(int i=0,t;i<e[x].size();i++)if((t=e[x][i].t)!=F)dfs1(t,x),d[x]=max(d[x],d[t]+e[x][i].v);}
void dfs2(int x,int F)
{
ll fm=0,sm=0;
for(int i=0,t;i<e[x].size();i++) if((t=e[x][i].t)!=F)
{
if(d[t]+e[x][i].v>fm) sm=fm,fm=d[t]+e[x][i].v;
else sm=max(sm,d[t]+e[x][i].v);
u[t]=u[x]+e[x][i].v;
}
for(int i=0,t;i<e[x].size();i++) if((t=e[x][i].t)!=F)
{
if(d[t]+e[x][i].v==fm) u[t]=max(u[t],sm+e[x][i].v);
else u[t]=max(u[t],fm+e[x][i].v);
dfs2(t,x);
}
}
int main()
{
scanf("%d%lld",&n,&m);
for(int i=2;i<=n;i++) scanf("%d%lld",&x,&y),e[i].push_back(nod(x,y)),e[x].push_back(nod(i,y));
dfs1(1,0);dfs2(1,0);
for(int i=1;i<=n;i++) a[i]=max(u[i],d[i]);
for(int i=1;i<=n;i++)
{
while(l1<=r1&&a[i]<=a[q1[r1]]) r1--;
while(l2<=r2&&a[i]>=a[q2[r2]]) r2--;
q1[++r1]=i;q2[++r2]=i;
while(a[q2[l2]]-a[q1[l1]]>m) if(q2[l2]<q1[l1]) g=q2[l2]+1,l2++;else g=q1[l1]+1,l1++;
ans=max(ans,i-g+1);
}
printf("%d\n",ans);
}

【bzoj2500】幸福的道路 树形dp+单调队列的更多相关文章

  1. bzoj2500幸福的道路 树形dp+单调队列

    2500: 幸福的道路 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 434  Solved: 170[Submit][Status][Discuss ...

  2. (noip模拟二十一)【BZOJ2500】幸福的道路-树形DP+单调队列

    Description 小T与小L终于决定走在一起,他们不想浪费在一起的每一分每一秒,所以他们决定每天早上一同晨练来享受在一起的时光. 他们画出了晨练路线的草图,眼尖的小T发现可以用树来描绘这个草图. ...

  3. [BZOJ 2500]幸福的道路 树形dp+单调队列+二分答案

    考试的时候打了个树链剖分,而且还审错题了,以为是每天找所有点的最长路,原来是每天起点的树上最长路径再搞事情.. 先用dfs处理出来每个节点以他为根的子树的最长链和次长链.(后面会用到) 然后用类似dp ...

  4. bzoj2500: 幸福的道路(树形dp+单调队列)

    好题.. 先找出每个节点的树上最长路 由树形DP完成 节点x,设其最长路的子节点为y 对于y的最长路,有向上和向下两种情况: down:y向子节点的最长路g[y][0] up:x的次长路的g[x][1 ...

  5. 【bzoj2500】幸福的道路 树形dp+倍增RMQ+二分

    原文地址:http://www.cnblogs.com/GXZlegend/p/6825389.html 题目描述 小T与小L终于决定走在一起,他们不想浪费在一起的每一分每一秒,所以他们决定每天早上一 ...

  6. 【BZOJ2500】幸福的道路 树形DP+RMQ+双指针法

    [BZOJ2500]幸福的道路 Description 小T与小L终于决定走在一起,他们不想浪费在一起的每一分每一秒,所以他们决定每天早上一同晨练来享受在一起的时光. 他们画出了晨练路线的草图,眼尖的 ...

  7. Codeforces 980F Cactus to Tree 仙人掌 Tarjan 树形dp 单调队列

    原文链接https://www.cnblogs.com/zhouzhendong/p/CF980F.html 题目传送门 - CF980F 题意 给定一个 $n$ 个节点 $m$ 条长为 $1$ 的边 ...

  8. HDU 4123 Bob’s Race 树形dp+单调队列

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4123 Time Limit: 5000/2000 MS (Java/Others) Memory L ...

  9. POJ - 3162 Walking Race 树形dp 单调队列

    POJ - 3162Walking Race 题目大意:有n个训练点,第i天就选择第i个训练点为起点跑到最远距离的点,然后连续的几天里如果最远距离的最大值和最小值的差距不超过m就可以作为观测区间,问这 ...

随机推荐

  1. Linux - apache 服务

    暂时关闭 iptables 防火墙 [root@sch01ar ~]# systemctl stop iptables.service 暂时关闭 firewall 防火墙 [root@sch01ar ...

  2. rpm --import /etc/pki/rpm-gpg/RPM* 有什么用?

      今天用yum安装软件,遇到了Could not open/read file:///etc/pki/rpm-gpg/RPM-GPG-KEY-EPEL问题,为了加深印象,特别搜索了RPM-GPG-K ...

  3. 使用Java进行远程方法调用的几个方案及比较

    Java远程方法调用是编程过程中比较常见的问题,列举一下主要包括如下几类: 1.Java RMI (Remote Method Invocation) 2.EJB远程接口调用 3.WebService ...

  4. 只能在执行Render() 的过程中调用 RegisterForEventValidation;

    October 17, 2008  3:28 PMMarch 29, 2013  8:28 PM Aillo 编程   0 Comments 在实现"将GridView中的数据导出到Exce ...

  5. 微信小程序中的倒计时

    这是我项目中的例子,如果有更好的建议欢迎留言 ,一起学习 //获取时间 var sekillStartTime = resultLis[0].planGroup0.sekillStartTime;// ...

  6. 解决Axis2在webservice中遇到特殊字符的无法传输的缺陷(<CDATA>数据类型)

    在使用Axis2进行soa webservice开发时,遇到类似以下的错误信息: com.ctc.wstx.sw.BaseStreamWriter.writeCharacters(BaseStream ...

  7. 编译错误error:&nbsp;invalid&amp;nbsp…

    昨天遇到一个莫名其妙的编译错误,以前没有见过,而且代码流程看起来也没有太多的奇异之处.后来忍无可忍,百度了下,发现别人也有遇到这个错误的,他的解决方法是:少了"}". 嘿嘿,我开始 ...

  8. s3c6410开发板LED驱动程序设计详细…

    2 下面来看看tiny6410关于LED的原理图如图(1)所示: 图1    LED原理图 3 LED实例,代码如下所示:(代码摘自\光盘4\实验代码\3-3-1\src\main.c) main.c ...

  9. oracle 11g 32&64位导出 导入到Oracle10g 32位

    想导入一个oracle11g的数据库到自己本地电脑上,直接exp导出的话拿到自己电脑上提示错误, 于是在网上找方法 方法如下 : 一.在11g服务器上,使用expdp命令备份数据 11g 导出语句:E ...

  10. Laravel 5.3 auth中间件底层实现详解(转)

    1. 注册认证中间件, 在文件 app/Http/Kernel.php 内完成: protected $routeMiddleware = [ 'auth' => \Illuminate\Aut ...