Query on a tree 树链剖分 [模板]
You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, 3...N-1.
We will ask you to perfrom some instructions of the following form:
- CHANGE i ti : change the cost of the i-th edge to ti
or - QUERY a b : ask for the maximum edge cost on the path from node a to node b
Input
The first line of input contains an integer t, the number of test cases (t <= 20). t test cases follow.
For each test case:
- In the first line there is an integer N (N <= 10000),
- In the next N-1 lines, the i-th line describes the i-th edge: a line with three integers a b c denotes an edge between a, b of cost c (c <= 1000000),
- The next lines contain instructions "CHANGE i ti" or "QUERY a b",
- The end of each test case is signified by the string "DONE".
There is one blank line between successive tests.
Output
For each "QUERY" operation, write one integer representing its result.
Example
Input:
1 3
1 2 1
2 3 2
QUERY 1 2
CHANGE 1 3
QUERY 1 2
DONE Output:
1
3
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 100005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
#define mclr(x,a) memset((x),a,sizeof(x))
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-5
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii; inline int rd() {
int x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/
struct node {
int to, nxt;
}e[maxn];
int head[maxn], tot;
int top[maxn];// top[v]表示v所在的重链的顶点
int fa[maxn];
int dep[maxn];
int num[maxn];// num[v]表示以v为根的子树大小
int p[maxn];// p[v]表示v与其父亲节点在线段树的位置
int fp[maxn];
int son[maxn];// 重儿子
int pos;
int n; void init() {
tot = 0; memset(head, -1, sizeof(head));
pos = 1; memset(son, -1, sizeof(son));
}
void addedge(int u, int v) {
e[tot].to = v; e[tot].nxt = head[u]; head[u] = tot++;
} void dfs1(int u, int pre, int d) {
dep[u] = d; fa[u] = pre; num[u] = 1;
for (int i = head[u]; i != -1; i = e[i].nxt) {
int v = e[i].to;
if (v != pre) {
dfs1(v, u, d + 1);
num[u] += num[v];
if (son[u] == -1 || num[v] > num[son[u]])son[u] = v;
}
}
} void dfs2(int u, int sp) {
top[u] = sp;
if (son[u] != -1) {
p[u] = pos++;
fp[p[u]] = u;
dfs2(son[u], sp);
}
else {
p[u] = pos++; fp[p[u]] = u; return;
}
for (int i = head[u]; i != -1; i = e[i].nxt) {
int v = e[i].to;
if (v != son[u] && v != fa[u])dfs2(v, v);
}
} #define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
int maxx[maxn];
int val[maxn];
void pushup(int rt) {
maxx[rt] = max(maxx[rt << 1], maxx[rt << 1 | 1]);
}
void build(int l, int r, int rt) {
if (l == r) {
maxx[rt] = val[l]; return;
}
int m = (l + r) >> 1;
build(lson); build(rson); pushup(rt);
}
void upd(int p, int x, int l, int r, int rt) {
if (l == r) {
maxx[rt] = x; return;
}
int m = (l + r) >> 1;
if (p <= m)upd(p, x, lson);
else upd(p, x, rson);
pushup(rt);
}
int query(int L, int R, int l, int r, int rt) {
if (L <= l && r <= R) {
return maxx[rt];
}
int m = (l + r) >> 1;
int ans = 0;
if (L <= m)ans = max(ans, query(L, R, lson));
if (m < R)ans = max(ans, query(L, R, rson));
return ans;
} int Find(int u, int v) {
int f1 = top[u], f2 = top[v];
int tmp = 0;
while (f1 != f2) {
if (dep[f1] < dep[f2]) {
swap(f1, f2); swap(u, v);
}
tmp = max(tmp, query(p[f1], p[u], 1, n, 1));
u = fa[f1]; f1 = top[u];
}
if (u == v)return tmp;
if (dep[u] > dep[v])swap(u, v);
return max(tmp, query(p[son[u]], p[v], 1, n, 1));
}
int ed[maxn][3]; int main()
{
// ios::sync_with_stdio(0);
int t; t = rd();
while (t--) {
init(); n = rd();
// getchar();
for (int i = 0; i < n - 1; i++) {
ed[i][0] = rd(); ed[i][1] = rd(); ed[i][2] = rd();
addedge(ed[i][0], ed[i][1]);
addedge(ed[i][1], ed[i][0]);
}
dfs1(1, 0, 0); dfs2(1, 1);
for (int i = 0; i < n - 1; i++) {
if (dep[ed[i][0]] < dep[ed[i][1]]) {
swap(ed[i][0], ed[i][1]);
}
val[p[ed[i][0]]] = ed[i][2];
}
build(1, n, 1);
char opt[10];
while (scanf("%s",opt)) {
if (opt[0] == 'D')break;
int u, v; u = rd(); v = rd();
if (opt[0] == 'Q') {
printf("%d\n", Find(u, v));
}
else upd(p[ed[u - 1][0]], v, 1, n, 1);
}
}
return 0;
}
Query on a tree 树链剖分 [模板]的更多相关文章
- SPOJ 375 Query on a tree 树链剖分模板
第一次写树剖~ #include<iostream> #include<cstring> #include<cstdio> #define L(u) u<&l ...
- Hdu 5274 Dylans loves tree (树链剖分模板)
Hdu 5274 Dylans loves tree (树链剖分模板) 题目传送门 #include <queue> #include <cmath> #include < ...
- spoj QTREE - Query on a tree(树链剖分+线段树单点更新,区间查询)
传送门:Problem QTREE https://www.cnblogs.com/violet-acmer/p/9711441.html 题解: 树链剖分的模板题,看代码比看文字解析理解来的快~~~ ...
- spoj 375 QTREE - Query on a tree 树链剖分
题目链接 给一棵树, 每条边有权值, 两种操作, 一种是将一条边的权值改变, 一种是询问u到v路径上最大的边的权值. 树链剖分模板. #include <iostream> #includ ...
- SPOJ Query on a tree 树链剖分 水题
You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, ...
- Query on a tree——树链剖分整理
树链剖分整理 树链剖分就是把树拆成一系列链,然后用数据结构对链进行维护. 通常的剖分方法是轻重链剖分,所谓轻重链就是对于节点u的所有子结点v,size[v]最大的v与u的边是重边,其它边是轻边,其中s ...
- SPOJ QTREE Query on a tree 树链剖分+线段树
题目链接:http://www.spoj.com/problems/QTREE/en/ QTREE - Query on a tree #tree You are given a tree (an a ...
- spoj 375 Query on a tree (树链剖分)
Query on a tree You are given a tree (an acyclic undirected connected graph) with N nodes, and edges ...
- SPOJ QTREE Query on a tree ——树链剖分 线段树
[题目分析] 垃圾vjudge又挂了. 树链剖分裸题. 垃圾spoj,交了好几次,基本没改动却过了. [代码](自带常数,是别人的2倍左右) #include <cstdio> #incl ...
随机推荐
- HashMap与ConcurrentHashMap的区别(转)
从JDK1.2起,就有了HashMap,正如前一篇文章所说,HashMap不是线程安全的,因此多线程操作时需要格外小心. 在JDK1.5中,伟大的Doug Lea给我们带来了concurrent包,从 ...
- 解决mybatis中转义字符的问题
xml格式中不允许出现类似“>”这样的字符,有如下两种解决方法 方法一:使用转义字符 SELECT * FROM test WHERE 1 = 1 AND start_date <= CU ...
- SpringBoot18 Swagger、API接口文档生成、WireMock、模拟后台数据
1 Swagger 1.1 简述 前后端分离的项目需要前后端开发人员协同工作,后台开发人员需要给到前端开发者一套API文档:利用Swagger可以简单高效的帮助后台开发者生成RestfulAPI开发文 ...
- VS运行release版本正常,直接执行exe文件会出现问题
博客转载自:https://blog.csdn.net/weixinhum/article/details/39962483 检测了一下自己的程序,发现程序先后开启了两个线程,并且对两个线程的启动顺序 ...
- 性能优化之_android布局优化
优化布局的的原则就是减少创建的对象的数量,setContentView话费onCreate到onResume中的大概99%的时间1.使用Relativelayout而不是LinearLayout,Li ...
- 使用原理视角看 Git
1. Git 的玩法 欢迎来到 Coding 技术小馆,我叫谭贺贺,目前我在 Coding.net 主要负责 WebIDE 与 Codeinsight 的开发.我今天带来的主要内容是 Git 的原理与 ...
- 关于wamp中升级PHP+Apache 的问题
首先个人不建议wamp中升级php版本,如果你不信可以试一试,当你php升级后发想,奥,Apache版本不匹配,然后又去升级Apache,结果搞了半天,弄出来了就好,要是没出来,可能你会气死(好吧,气 ...
- Django框架 之 modelform组件
Django框架 之 modelform组件 浏览目录 创建mldelform 添加记录 编辑记录 Django框架中的modelform组件 通过名字我们可以看出来,这个组件的功能就是把model和 ...
- 数据库连接池DBUtils
安装 pip3 install DBUtils DBUtils是Python的一个用于实现数据库连接池的模块. 此连接池有两种连接模式: 模式一:为每个线程创建一个连接,线程即使调用了close方法, ...
- Nginx禁止直接通过IP地址访问网站
介绍下在nginx服务器禁止直接通过IP地址访问网站的方法,以避免别人恶意指向自己的IP,有需要的朋友参考下. 有时会遇到很多的恶意IP攻击,在Nginx下可以禁止IP访问. Nginx的默认虚拟主机 ...