You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, 3...N-1.

We will ask you to perfrom some instructions of the following form:

  • CHANGE i ti : change the cost of the i-th edge to ti
    or
  • QUERY a b : ask for the maximum edge cost on the path from node a to node b

Input

The first line of input contains an integer t, the number of test cases (t <= 20). t test cases follow.

For each test case:

  • In the first line there is an integer N (N <= 10000),
  • In the next N-1 lines, the i-th line describes the i-th edge: a line with three integers a b c denotes an edge between a, b of cost c (c <= 1000000),
  • The next lines contain instructions "CHANGE i ti" or "QUERY a b",
  • The end of each test case is signified by the string "DONE".

There is one blank line between successive tests.

Output

For each "QUERY" operation, write one integer representing its result.

Example

Input:
1 3
1 2 1
2 3 2
QUERY 1 2
CHANGE 1 3
QUERY 1 2
DONE Output:
1
3
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 100005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
#define mclr(x,a) memset((x),a,sizeof(x))
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-5
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii; inline int rd() {
int x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/
struct node {
int to, nxt;
}e[maxn];
int head[maxn], tot;
int top[maxn];// top[v]表示v所在的重链的顶点
int fa[maxn];
int dep[maxn];
int num[maxn];// num[v]表示以v为根的子树大小
int p[maxn];// p[v]表示v与其父亲节点在线段树的位置
int fp[maxn];
int son[maxn];// 重儿子
int pos;
int n; void init() {
tot = 0; memset(head, -1, sizeof(head));
pos = 1; memset(son, -1, sizeof(son));
}
void addedge(int u, int v) {
e[tot].to = v; e[tot].nxt = head[u]; head[u] = tot++;
} void dfs1(int u, int pre, int d) {
dep[u] = d; fa[u] = pre; num[u] = 1;
for (int i = head[u]; i != -1; i = e[i].nxt) {
int v = e[i].to;
if (v != pre) {
dfs1(v, u, d + 1);
num[u] += num[v];
if (son[u] == -1 || num[v] > num[son[u]])son[u] = v;
}
}
} void dfs2(int u, int sp) {
top[u] = sp;
if (son[u] != -1) {
p[u] = pos++;
fp[p[u]] = u;
dfs2(son[u], sp);
}
else {
p[u] = pos++; fp[p[u]] = u; return;
}
for (int i = head[u]; i != -1; i = e[i].nxt) {
int v = e[i].to;
if (v != son[u] && v != fa[u])dfs2(v, v);
}
} #define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
int maxx[maxn];
int val[maxn];
void pushup(int rt) {
maxx[rt] = max(maxx[rt << 1], maxx[rt << 1 | 1]);
}
void build(int l, int r, int rt) {
if (l == r) {
maxx[rt] = val[l]; return;
}
int m = (l + r) >> 1;
build(lson); build(rson); pushup(rt);
}
void upd(int p, int x, int l, int r, int rt) {
if (l == r) {
maxx[rt] = x; return;
}
int m = (l + r) >> 1;
if (p <= m)upd(p, x, lson);
else upd(p, x, rson);
pushup(rt);
}
int query(int L, int R, int l, int r, int rt) {
if (L <= l && r <= R) {
return maxx[rt];
}
int m = (l + r) >> 1;
int ans = 0;
if (L <= m)ans = max(ans, query(L, R, lson));
if (m < R)ans = max(ans, query(L, R, rson));
return ans;
} int Find(int u, int v) {
int f1 = top[u], f2 = top[v];
int tmp = 0;
while (f1 != f2) {
if (dep[f1] < dep[f2]) {
swap(f1, f2); swap(u, v);
}
tmp = max(tmp, query(p[f1], p[u], 1, n, 1));
u = fa[f1]; f1 = top[u];
}
if (u == v)return tmp;
if (dep[u] > dep[v])swap(u, v);
return max(tmp, query(p[son[u]], p[v], 1, n, 1));
}
int ed[maxn][3]; int main()
{
// ios::sync_with_stdio(0);
int t; t = rd();
while (t--) {
init(); n = rd();
// getchar();
for (int i = 0; i < n - 1; i++) {
ed[i][0] = rd(); ed[i][1] = rd(); ed[i][2] = rd();
addedge(ed[i][0], ed[i][1]);
addedge(ed[i][1], ed[i][0]);
}
dfs1(1, 0, 0); dfs2(1, 1);
for (int i = 0; i < n - 1; i++) {
if (dep[ed[i][0]] < dep[ed[i][1]]) {
swap(ed[i][0], ed[i][1]);
}
val[p[ed[i][0]]] = ed[i][2];
}
build(1, n, 1);
char opt[10];
while (scanf("%s",opt)) {
if (opt[0] == 'D')break;
int u, v; u = rd(); v = rd();
if (opt[0] == 'Q') {
printf("%d\n", Find(u, v));
}
else upd(p[ed[u - 1][0]], v, 1, n, 1);
}
}
return 0;
}

Query on a tree 树链剖分 [模板]的更多相关文章

  1. SPOJ 375 Query on a tree 树链剖分模板

    第一次写树剖~ #include<iostream> #include<cstring> #include<cstdio> #define L(u) u<&l ...

  2. Hdu 5274 Dylans loves tree (树链剖分模板)

    Hdu 5274 Dylans loves tree (树链剖分模板) 题目传送门 #include <queue> #include <cmath> #include < ...

  3. spoj QTREE - Query on a tree(树链剖分+线段树单点更新,区间查询)

    传送门:Problem QTREE https://www.cnblogs.com/violet-acmer/p/9711441.html 题解: 树链剖分的模板题,看代码比看文字解析理解来的快~~~ ...

  4. spoj 375 QTREE - Query on a tree 树链剖分

    题目链接 给一棵树, 每条边有权值, 两种操作, 一种是将一条边的权值改变, 一种是询问u到v路径上最大的边的权值. 树链剖分模板. #include <iostream> #includ ...

  5. SPOJ Query on a tree 树链剖分 水题

    You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, ...

  6. Query on a tree——树链剖分整理

    树链剖分整理 树链剖分就是把树拆成一系列链,然后用数据结构对链进行维护. 通常的剖分方法是轻重链剖分,所谓轻重链就是对于节点u的所有子结点v,size[v]最大的v与u的边是重边,其它边是轻边,其中s ...

  7. SPOJ QTREE Query on a tree 树链剖分+线段树

    题目链接:http://www.spoj.com/problems/QTREE/en/ QTREE - Query on a tree #tree You are given a tree (an a ...

  8. spoj 375 Query on a tree (树链剖分)

    Query on a tree You are given a tree (an acyclic undirected connected graph) with N nodes, and edges ...

  9. SPOJ QTREE Query on a tree ——树链剖分 线段树

    [题目分析] 垃圾vjudge又挂了. 树链剖分裸题. 垃圾spoj,交了好几次,基本没改动却过了. [代码](自带常数,是别人的2倍左右) #include <cstdio> #incl ...

随机推荐

  1. phpmailer邮件类

    <?php/** * 邮件类 * Enter description here ... * @author df * Mail::getMail()->sendMail(); * */cl ...

  2. Python的Flask框架使用Redis做数据缓存的配置方法

    flask配置redis 首先得下载flask的缓存插件Flask-Cache,使用pip下载. sudo pip install flask_cache 为应用扩展flask_cache   app ...

  3. Variable hoisting Function hoisting

    Variable hoisting Another unusual thing about variables in JavaScript is that you can refer to a var ...

  4. 用户“*****”不具有所需的权限。请验证授予了足够的权限并且解决了 Windows 用户帐户控制(UAC)限制问题。

    错误: 用户“ts\***”不具有所需的权限.请验证授予了足够的权限并且解决了 Windows 用户帐户控制(UAC)限制问题. 解决: 当从客户端用IE连接http://xxx.xxx.xxx.xx ...

  5. 并发之AtomicIntegerArray

    5 并发之AtomicIntegerArray     该类是Java对Integer数组支持的原子性操作:在认识这个类之前我们先来看一个方法,这个方法是Integer类中的:  public sta ...

  6. zookeeper集群安装的奇怪现象

    zookeeper:配置的集群信息是domain:端口2888:端口3888:  domain为内网静态ip:每次启动都不能相互连接报错误: [myid:3] - WARN  [WorkerSende ...

  7. 1-2 开发环境搭建-Windows平台

    C:\Program Files\nodejs\node_modules\npm\npmrc C:\Users\ZHONGZHENHUA\.android\avd H:\heimaandroidadt ...

  8. 使用composer安装laravel5.4

    composer create-project --prefer-dist laravel/laravel blog 后面的是文件目录

  9. 575. Distribute Candies 平均分糖果,但要求种类最多

    [抄题]: Given an integer array with even length, where different numbers in this array represent diffe ...

  10. 661. Image Smoother色阶中和器

    [抄题]: Given a 2D integer matrix M representing the gray scale of an image, you need to design a smoo ...