【51Nod】-1326 遥远的旅途
Description
一个国家有 N 个城市, 这些城市被标为 0,1,2,...N-1。 这些城市间连有 M 条道路, 每条 道路连接两个不同的城市, 且道路都是双向的。 一个小鹿喜欢在城市间沿着道路自由的穿梭, 初始时小鹿在城市 0 处, 它最终的目的地是城市 N-1 处。 小鹿每在一个城市, 它会选择一条 道路, 并沿着这条路一直走到另一个城市, 然后再重复上述过程。 每条道路会花费小鹿不同 的时间走完, 在城市中小鹿不花时间逗留。
路程中, 小鹿可以经过一条路多次也可以经过一个城市多次。 给定城市间道路的信息,
问小鹿是否有一种走法, 从城市 0 出发到达城市 N-1 时, 恰好一共花费 T 个单位的时间。 如
果存在输出“ Possible”, 否则输出“ Impossible”。
注意, 小鹿在整个过程中可以多次经过城市 N-1, 只要最终小鹿停在城市 N-1 即可。
例如样例中小鹿的行程可以是 0->1->2->0->2。
Input
多组测试数据, 输入的第一行含一个整数 caseT, 表示测试数据个数, 1<=caseT<=5.
之后有 caseT 组相同结构的测试数据, 每组测试数据构成如下:
第一行三个整数, N, M, T,
且 2<=N<=50,1<=M<=50, 1<=T<= 10^18).
之后 M 行, 每行三个整数 Ai,Bi,Di,表示城市 Ai 与 Bi 间有一条双向道路, 且小鹿穿越
这条路要花费 Di 的时间。 其中, 0<= Ai,Bi<N, 1<=Di<=10000。
Output
每组测试数据一行输出, 如果存在题目所述路径输出“ Possible”, 否则“ Impossible”,
不含引号。
Sample Input
1
3 3 25
0 2 7
0 1 6
1 2 5
Sample Output
Possible
Hint
【数据范围】
对于 10%的数据, caseT=1
对于另外 20% 的数据, caseT=2
对于 100%的数据, caseT<=5
基本思想:能否在T时刻刚好到达n号点,可选n点的任一入边(q-->n),记录边长ds,看能否在S时刻到达q,且 (T-S)%(2*ds)==0(S<=T)。
然后可以设dp[x][y] 表示到达x点,并且使dp[i][j]%(2*ds)==j 成立的最小时刻。初始化dp[1][0]=0;然后跑SPFA;DP方程dp[k][ (j+dis[i][k])%(2*ds) ] = min { dp[i][j] + dis[i][k] }。
几个注意点:
1:要开 long long,而且切记写在 gi() 之前!
2:如果没有跑完SPFA就直接 return ,切记先把队列弹空!
#include <map>
#include <set>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define int long long
#define file(a) freopen(a".in","r",stdin); freopen(a".out","w",stdout); inline int gi()
{
bool b=; int r=; char c=getchar();
while(c<'' || c>'') { if(c=='-') b=!b; c=getchar(); }
while(c>='' && c<='') { r=r*+c-''; c=getchar(); }
if(b) return -r; return r;
} const int inf = 1e9+, N = , M = 2e5+;
int n,m,t,s,num,f[N],dp[N][M];
bool b[N][M],fg=;
struct node
{
int nx,to,ds;
}da[N<<];
struct date
{
int x,y;
};
queue<date>q; void link(int fr,int to,int ds)
{
da[++num].to=to, da[num].ds=ds, da[num].nx=f[fr], f[fr]=num;
} void spfa()
{
for(int i=;i<=n;i++) for(int j=;j<s;j++) dp[i][j]=t+, b[i][j]=;
// 切记从 1 开始
b[][]=; dp[][]=; date st={,}; q.push(st);
while(!q.empty())
{
date o=q.front(); q.pop(); int x=o.x, y=o.y; b[x][y]=;
for(int i=f[x];i;i=da[i].nx)
{
int tt=da[i].to, ss=da[i].ds, l=(y+ss)%s; // y 和 dp[x][y] 对于s 同余
if(dp[x][y]+ss<dp[tt][l])
{
dp[tt][l]=dp[x][y]+ss;
if(!b[tt][l]) { date v={tt,l}; q.push(v); b[tt][l]=; }
}
}
}
} main()
{
int C=gi();
while(C--)
{
n=gi(), m=gi(), t=gi(), fg=;
for(int i=;i<m;i++)
{
int x=gi()+, y=gi()+, z=gi();
link(x,y,z), link(y,x,z);
}
for(int i=f[n];i;i=da[i].nx)
{
s=da[i].ds<<; spfa();
if(dp[n][t%s]<=t) { puts("Possible"); fg=; break; }
}
if(fg) puts("Impossible");
for(int i=;i<=n;i++) f[i]=; num=;
}
return ;
}
【51Nod】-1326 遥远的旅途的更多相关文章
- 51Nod 1326 遥远的旅途
题目描述: 一个国家有N个城市,这些城市被标为0,1,2,...N-1.这些城市间连有M条道路,每条道路连接两个不同的城市,且道路都是双向的.一个小鹿喜欢在城市间沿着道路自由的穿梭,初始时小鹿在城市0 ...
- 51nod 1326 奇妙的spfa+dp
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1326 1326 遥远的旅途 题目来源: TopCoder 基准时间限制: ...
- 51nod1326 遥远的旅途(spfa+dp)
题意: 给出一个无向图,问从1到n是否存在一条长度为L的路径. n,m<=50,1<=路径长度<=10000,L<=10^18 思路: 改变一下思路,我们发现,假设从起点1走到 ...
- ACM-图论-同余最短路
https://www.cnblogs.com/31415926535x/p/11692422.html 一种没见过的处理模型,,记录一下,,主要是用来处理一个多元一次方程的解的数量的问题,,数据量小 ...
- 51nod 1273 旅行计划——思维题
某个国家有N个城市,编号0 至 N-1,他们之间用N - 1条道路连接,道路是双向行驶的,沿着道路你可以到达任何一个城市.你有一个旅行计划,这个计划是从编号K的城市出发,每天到达一个你没有去过的城市, ...
- [多校联考2019(Round 4 T2)][51nod 1288]汽油补给(ST表+单调栈)
[51nod 1288]汽油补给(ST表+单调栈) 题面 有(N+1)个城市,0是起点N是终点,开车从0 -> 1 - > 2...... -> N,车每走1个单位距离消耗1个单位的 ...
- seL4之hello-2旅途(完成更新)
seL4之hello-2旅途 2016/11/19 13:15:38 If you like my blog, please buy me a cup of coffee. 回顾上周 seL4运行环境 ...
- HDOJ 1326. Box of Bricks 纯水题
Box of Bricks Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...
- 【51Nod 1244】莫比乌斯函数之和
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1244 模板题... 杜教筛和基于质因子分解的筛法都写了一下模板. 杜教筛 ...
随机推荐
- Linux介绍和基本命令
Linux是什么? 就是运行在硬件之上的一组软件,主要控制内核和系统调用这2个层面为上层应用软件提供各种接口,并高效的控制硬件资源,与window一样是一种操作系统 Linux的创始人是林纳斯-托瓦兹 ...
- Android系统移植与调试之------->增加一个双击物理按键打开和关闭闪光灯并将闪光灯状态同步到下拉菜单中
最近有一个客户有这样的需求: 1.在[设置]--->[无障碍]中添加一个开关按钮. 如果打开开关的话,双击某个物理按键的时候,打开闪光灯,再双击该物理按键的时候,关闭闪光灯. 如果关闭开关的话, ...
- HDU 3199 Hamming Problem
Hamming Problem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tot ...
- KVM虚拟化安装配置
一.KVM的基础配置及安装: 1.查看是CPU否支持虚拟化: [root@oldboy-node1 ~]# grep -E "(vmx|svm)" /proc/cpuinfo vm ...
- 自定义Cell需要注意的问题
使用xib创建cell时需要在设置单元格样式时使用[[NSBundel mainBundel] loadNibName:@“xib的文件名”owner:self option:nil][0]来初始化单 ...
- VC中添加消息响应函数
1. 添加消息映射 2. 头文件中添加函数声明 3. 实现文件中添加函数定义
- hadoop程序在本地模式调试作业
1.首先下载cygwin,例如安装在该目录下,D:\Program Files\cygwin\ 2.copy linux上的jar包到D:\Program Files\cygwin\home\lib ...
- 简要总结ajax工作原理及优缺点
虽然在实际的项目中使用多种ajax请求,但就其工作原理,优缺点尚未深入总结, 参考:http://www.cnblogs.com/SanMaoSpace/archive/2013/06/15/3137 ...
- 20145222黄亚奇 《网络对抗技术》 MAL_逆向与Bof基础
学习目的 通过一些方法,使能够运行本不该被运行的代码部分,或得到shell的使用: 将正常运行代码部分某处call后的目标地址,修改为另一部分我们希望执行.却本不应该执行的代码部分首地址(这需要我们有 ...
- Win32 API编程:WinMain无法重载函数或_tWinMain无法重载
#include "windows.h" #include "tchar.h" int APIENTRY _tWinMain( HINSTANCE hInsta ...