40个你可能不知道的Python的特点和技巧
1、拆箱
>>> a, b, c = 1 , 2 , 3 >>> a, b, c ( 1 , 2 , 3 ) >>> a, b, c = [ 1 , 2 , 3 ] >>> a, b, c ( 1 , 2 , 3 ) >>> a, b, c = ( 2 * i + 1 for i in range ( 3 )) >>> a, b, c ( 1 , 3 , 5 ) >>> a, (b, c), d = [ 1 , ( 2 , 3 ), 4 ] >>> a 1 >>> b 2 >>> c 3 >>> d 4 |
2、使用拆箱进行变量交换
>>> a, b = 1 , 2 >>> a, b = b, a >>> a, b ( 2 , 1 ) |
3、扩展的拆箱(Python 3支持)
>>> a, * b, c = [ 1 , 2 , 3 , 4 , 5 ] >>> a 1 >>> b [ 2 , 3 , 4 ] >>> c 5 |
4、负数索引
>>> a = [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 ] >>> a[ - 1 ] 10 >>> a[ - 3 ] 8 |
5、列表切片(a[start:end])
>>> a = [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 ] >>> a[ 2 : 8 ] [ 2 , 3 , 4 , 5 , 6 , 7 ] |
6、负数索引的列表切片
>>> a = [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 ] >>> a[ - 4 : - 2 ] [ 7 , 8 ] |
7、带步数的列表切片(a[start:end:step])
>>> a = [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 ] >>> a[:: 2 ] [ 0 , 2 , 4 , 6 , 8 , 10 ] >>> a[:: 3 ] [ 0 , 3 , 6 , 9 ] >>> a[ 2 : 8 : 2 ] [ 2 , 4 , 6 ] |
8、负数步数的列表切片
>>> a = [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 ] >>> a[:: - 1 ] [ 10 , 9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1 , 0 ] >>> a[:: - 2 ] [ 10 , 8 , 6 , 4 , 2 , 0 ] |
9、列表切片赋值
>>> a = [ 1 , 2 , 3 , 4 , 5 ] >>> a[ 2 : 3 ] = [ 0 , 0 ] >>> a [ 1 , 2 , 0 , 0 , 4 , 5 ] >>> a[ 1 : 1 ] = [ 8 , 9 ] >>> a [ 1 , 8 , 9 , 2 , 0 , 0 , 4 , 5 ] >>> a[ 1 : - 1 ] = [] >>> a [ 1 , 5 ] |
10、切片命名(slice(start, end, step))
>>> a = [ 0 , 1 , 2 , 3 , 4 , 5 ] >>> LASTTHREE = slice ( - 3 , None ) >>> LASTTHREE slice ( - 3 , None , None ) >>> a[LASTTHREE] [ 3 , 4 , 5 ] |
11、遍历列表索引和值(enumerate)
>>> a = [ "Hello" , "world" , "!" ] >>> for i, x in enumerate (a): ... print "{}: {}" . format (i, x) ... 0 : Hello 1 : world 2 : ! |
12、遍历字典的KEY和VALUE(dict.iteritems)
>>> m = { "a" : 1 , "b" : 2 , "c" : 3 , "d" : 4 } >>> for k, v in m.iteritems(): ... print "{}: {}" . format (k, v) ... a: 1 c: 3 b: 2 d: 4 # 注意:Python 3中要使用dict.items |
13、压缩 & 解压列表和可遍历对象
>>> a = [ 1 , 2 , 3 ] >>> b = [ "a" , "b" , "c" ] >>> z = zip (a, b) >>> z [( 1 , "a" ), ( 2 , "b" ), ( 3 , "c" )] >>> zip ( * z) [( 1 , 2 , 3 ), ( "a" , "b" , "c" )] |
14、使用zip分组相邻列表项
>>> a = [ 1 , 2 , 3 , 4 , 5 , 6 ] >>> # Using iterators >>> group_adjacent = lambda a, k: zip ( * ([ iter (a)] * k)) >>> group_adjacent(a, 3 ) [( 1 , 2 , 3 ), ( 4 , 5 , 6 )] >>> group_adjacent(a, 2 ) [( 1 , 2 ), ( 3 , 4 ), ( 5 , 6 )] >>> group_adjacent(a, 1 ) [( 1 ,), ( 2 ,), ( 3 ,), ( 4 ,), ( 5 ,), ( 6 ,)] >>> # Using slices >>> from itertools import islice >>> group_adjacent = lambda a, k: zip ( * (islice(a, i, None , k) for i in range (k))) >>> group_adjacent(a, 3 ) [( 1 , 2 , 3 ), ( 4 , 5 , 6 )] >>> group_adjacent(a, 2 ) [( 1 , 2 ), ( 3 , 4 ), ( 5 , 6 )] >>> group_adjacent(a, 1 ) [( 1 ,), ( 2 ,), ( 3 ,), ( 4 ,), ( 5 ,), ( 6 ,)] |
15、使用zip & iterators实现推拉窗(n-grams)
>>> from itertools import islice >>> def n_grams(a, n): ... z = (islice(a, i, None ) for i in range (n)) ... return zip ( * z) ... >>> a = [ 1 , 2 , 3 , 4 , 5 , 6 ] >>> n_grams(a, 3 ) [( 1 , 2 , 3 ), ( 2 , 3 , 4 ), ( 3 , 4 , 5 ), ( 4 , 5 , 6 )] >>> n_grams(a, 2 ) [( 1 , 2 ), ( 2 , 3 ), ( 3 , 4 ), ( 4 , 5 ), ( 5 , 6 )] >>> n_grams(a, 4 ) [( 1 , 2 , 3 , 4 ), ( 2 , 3 , 4 , 5 ), ( 3 , 4 , 5 , 6 )] |
16、使用zip反相字典对象
>>> m = { "a" : 1 , "b" : 2 , "c" : 3 , "d" : 4 } >>> m.items() [( "a" , 1 ), ( "c" , 3 ), ( "b" , 2 ), ( "d" , 4 )] >>> zip (m.values(), m.keys()) [( 1 , "a" ), ( 3 , "c" ), ( 2 , "b" ), ( 4 , "d" )] >>> mi = dict ( zip (m.values(), m.keys())) >>> mi { 1 : "a" , 2 : "b" , 3 : "c" , 4 : "d" } |
17、合并列表
>>> a = [[ 1 , 2 ], [ 3 , 4 ], [ 5 , 6 ]] >>> list (itertools.chain.from_iterable(a)) [ 1 , 2 , 3 , 4 , 5 , 6 ] >>> sum (a, []) [ 1 , 2 , 3 , 4 , 5 , 6 ] >>> [x for l in a for x in l] [ 1 , 2 , 3 , 4 , 5 , 6 ] >>> a = [[[ 1 , 2 ], [ 3 , 4 ]], [[ 5 , 6 ], [ 7 , 8 ]]] >>> [x for l1 in a for l2 in l1 for x in l2] [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ] >>> a = [ 1 , 2 , [ 3 , 4 ], [[ 5 , 6 ], [ 7 , 8 ]]] >>> flatten = lambda x: [y for l in x for y in flatten(l)] if type (x) is list else [x] >>> flatten(a) [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ] Note: according to Python"s documentation on sum , itertools.chain.from_iterable is the preferred method for this. |
18、生成器
>>> g = (x * * 2 for x in xrange ( 10 )) >>> next (g) 0 >>> next (g) 1 >>> next (g) 4 >>> next (g) 9 >>> sum (x * * 3 for x in xrange ( 10 )) 2025 >>> sum (x * * 3 for x in xrange ( 10 ) if x % 3 = = 1 ) 408 |
19、字典解析
>>> m = {x: x * * 2 for x in range ( 5 )} >>> m { 0 : 0 , 1 : 1 , 2 : 4 , 3 : 9 , 4 : 16 } >>> m = {x: "A" + str (x) for x in range ( 10 )} >>> m { 0 : "A0" , 1 : "A1" , 2 : "A2" , 3 : "A3" , 4 : "A4" , 5 : "A5" , 6 : "A6" , 7 : "A7" , 8 : "A8" , 9 : "A9" } |
20、使用字典解析反相字典对象
>>> m = { "a" : 1 , "b" : 2 , "c" : 3 , "d" : 4 } >>> m { "d" : 4 , "a" : 1 , "b" : 2 , "c" : 3 } >>> {v: k for k, v in m.items()} { 1 : "a" , 2 : "b" , 3 : "c" , 4 : "d" } |
21、命名的tuples(collections.namedtuple)
>>> Point = collections.namedtuple( "Point" , [ "x" , "y" ]) >>> p = Point(x = 4.0 , y = 2.0 ) >>> p Point(x = 4.0 , y = 2.0 ) >>> p.x 4.0 >>> p.y 2.0 |
22、继承命名tuples
>>> class Point(collections.namedtuple( "PointBase" , [ "x" , "y" ])): ... __slots__ = () ... def __add__( self , other): ... return Point(x = self .x + other.x, y = self .y + other.y) ... >>> p = Point(x = 4.0 , y = 2.0 ) >>> q = Point(x = 2.0 , y = 3.0 ) >>> p + q Point(x = 6.0 , y = 5.0 ) |
23、Set & Set运算
>>> A = { 1 , 2 , 3 , 3 } >>> A set ([ 1 , 2 , 3 ]) >>> B = { 3 , 4 , 5 , 6 , 7 } >>> B set ([ 3 , 4 , 5 , 6 , 7 ]) >>> A | B set ([ 1 , 2 , 3 , 4 , 5 , 6 , 7 ]) >>> A & B set ([ 3 ]) >>> A - B set ([ 1 , 2 ]) >>> B - A set ([ 4 , 5 , 6 , 7 ]) >>> A ^ B set ([ 1 , 2 , 4 , 5 , 6 , 7 ]) >>> (A ^ B) = = ((A - B) | (B - A)) True |
24、Multisets运算(collections.Counter)
>>> A = collections.Counter([ 1 , 2 , 2 ]) >>> B = collections.Counter([ 2 , 2 , 3 ]) >>> A Counter({ 2 : 2 , 1 : 1 }) >>> B Counter({ 2 : 2 , 3 : 1 }) >>> A | B Counter({ 2 : 2 , 1 : 1 , 3 : 1 }) >>> A & B Counter({ 2 : 2 }) >>> A + B Counter({ 2 : 4 , 1 : 1 , 3 : 1 }) >>> A - B Counter({ 1 : 1 }) >>> B - A Counter({ 3 : 1 }) |
25、列表中出现最多的元素(collections.Counter)
>>> A = collections.Counter([ 1 , 1 , 2 , 2 , 3 , 3 , 3 , 3 , 4 , 5 , 6 , 7 ]) >>> A Counter({ 3 : 4 , 1 : 2 , 2 : 2 , 4 : 1 , 5 : 1 , 6 : 1 , 7 : 1 }) >>> A.most_common( 1 ) [( 3 , 4 )] >>> A.most_common( 3 ) [( 3 , 4 ), ( 1 , 2 ), ( 2 , 2 )] |
26、双向队列(collections.deque)
>>> Q = collections.deque() >>> Q.append( 1 ) >>> Q.appendleft( 2 ) >>> Q.extend([ 3 , 4 ]) >>> Q.extendleft([ 5 , 6 ]) >>> Q deque([ 6 , 5 , 2 , 1 , 3 , 4 ]) >>> Q.pop() 4 >>> Q.popleft() 6 >>> Q deque([ 5 , 2 , 1 , 3 ]) >>> Q.rotate( 3 ) >>> Q deque([ 2 , 1 , 3 , 5 ]) >>> Q.rotate( - 3 ) >>> Q deque([ 5 , 2 , 1 , 3 ]) |
27、限制长度的双向队列(collections.deque)
>>> last_three = collections.deque(maxlen = 3 ) >>> for i in xrange ( 10 ): ... last_three.append(i) ... print ", " .join( str (x) for x in last_three) ... 0 0 , 1 0 , 1 , 2 1 , 2 , 3 2 , 3 , 4 3 , 4 , 5 4 , 5 , 6 5 , 6 , 7 6 , 7 , 8 7 , 8 , 9 |
28、排序字典(collections.OrderedDict)
>>> m = dict (( str (x), x) for x in range ( 10 )) >>> print ", " .join(m.keys()) 1 , 0 , 3 , 2 , 5 , 4 , 7 , 6 , 9 , 8 >>> m = collections.OrderedDict(( str (x), x) for x in range ( 10 )) >>> print ", " .join(m.keys()) 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 >>> m = collections.OrderedDict(( str (x), x) for x in range ( 10 , 0 , - 1 )) >>> print ", " .join(m.keys()) 10 , 9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1 |
29、默认字典(collections.defaultdict)
>>> m = dict () >>> m[ "a" ] Traceback (most recent call last):
File "<stdin>" , line 1 , in <module> KeyError: "a" >>> >>> m = collections.defaultdict( int ) >>> m[ "a" ] 0 >>> m[ "b" ] 0 >>> m = collections.defaultdict( str ) >>> m[ "a" ] "" >>> m[ "b" ] + = "a" >>> m[ "b" ] "a" >>> m = collections.defaultdict( lambda : "[default value]" ) >>> m[ "a" ] "[default value]" >>> m[ "b" ] "[default value]" |
30、使用defaultdict代表tree
>>> import json >>> tree = lambda : collections.defaultdict(tree) >>> root = tree() >>> root[ "menu" ][ "id" ] = "file" >>> root[ "menu" ][ "value" ] = "File" >>> root[ "menu" ][ "menuitems" ][ "new" ][ "value" ] = "New" >>> root[ "menu" ][ "menuitems" ][ "new" ][ "onclick" ] = "new();" >>> root[ "menu" ][ "menuitems" ][ "open" ][ "value" ] = "Open" >>> root[ "menu" ][ "menuitems" ][ "open" ][ "onclick" ] = "open();" >>> root[ "menu" ][ "menuitems" ][ "close" ][ "value" ] = "Close" >>> root[ "menu" ][ "menuitems" ][ "close" ][ "onclick" ] = "close();" >>> print json.dumps(root, sort_keys = True , indent = 4 , separators = ( "," , ": " )) {
"menu" : {
"id" : "file" ,
"menuitems" : {
"close" : {
"onclick" : "close();" ,
"value" : "Close"
},
"new" : {
"onclick" : "new();" ,
"value" : "New"
},
"open" : {
"onclick" : "open();" ,
"value" : "Open"
}
},
"value" : "File"
} } # 查看更多:https://gist.github.com/hrldcpr/2012250 |
31、映射对象到唯一的计数数字(collections.defaultdict)
>>> import itertools, collections >>> value_to_numeric_map = collections.defaultdict(itertools.count(). next ) >>> value_to_numeric_map[ "a" ] 0 >>> value_to_numeric_map[ "b" ] 1 >>> value_to_numeric_map[ "c" ] 2 >>> value_to_numeric_map[ "a" ] 0 >>> value_to_numeric_map[ "b" ] 1 |
32、最大 & 最小元素(heapq.nlargest and heapq.nsmallest)
>>> a = [random.randint( 0 , 100 ) for __ in xrange ( 100 )] >>> heapq.nsmallest( 5 , a) [ 3 , 3 , 5 , 6 , 8 ] >>> heapq.nlargest( 5 , a) [ 100 , 100 , 99 , 98 , 98 ] |
33、笛卡尔积(itertools.product)
>>> for p in itertools.product([ 1 , 2 , 3 ], [ 4 , 5 ]): ( 1 , 4 ) ( 1 , 5 ) ( 2 , 4 ) ( 2 , 5 ) ( 3 , 4 ) ( 3 , 5 ) >>> for p in itertools.product([ 0 , 1 ], repeat = 4 ): ... print "".join( str (x) for x in p) ... 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 |
34、组合(itertools.combinations and itertools.combinations_with_replacement)
>>> for c in itertools.combinations([ 1 , 2 , 3 , 4 , 5 ], 3 ): ... print "".join( str (x) for x in c) ... 123 124 125 134 135 145 234 235 245 345 >>> for c in itertools.combinations_with_replacement([ 1 , 2 , 3 ], 2 ): ... print "".join( str (x) for x in c) ... 11 12 13 22 23 33 |
35、排列(itertools.permutations)
>>> for p in itertools.permutations([ 1 , 2 , 3 , 4 ]): ... print "".join( str (x) for x in p) ... 1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321 |
36、链接可遍历对象(itertools.chain)
>>> a = [ 1 , 2 , 3 , 4 ] >>> for p in itertools.chain(itertools.combinations(a, 2 ), itertools.combinations(a, 3 )): ... print p ... ( 1 , 2 ) ( 1 , 3 ) ( 1 , 4 ) ( 2 , 3 ) ( 2 , 4 ) ( 3 , 4 ) ( 1 , 2 , 3 ) ( 1 , 2 , 4 ) ( 1 , 3 , 4 ) ( 2 , 3 , 4 ) >>> for subset in itertools.chain.from_iterable(itertools.combinations(a, n) for n in range ( len (a) + 1 )) ... print subset ... () ( 1 ,) ( 2 ,) ( 3 ,) ( 4 ,) ( 1 , 2 ) ( 1 , 3 ) ( 1 , 4 ) ( 2 , 3 ) ( 2 , 4 ) ( 3 , 4 ) ( 1 , 2 , 3 ) ( 1 , 2 , 4 ) ( 1 , 3 , 4 ) ( 2 , 3 , 4 ) ( 1 , 2 , 3 , 4 ) |
37、根据给定的KEY分组(itertools.groupby)
>>> from operator import itemgetter >>> import itertools >>> with open ( "contactlenses.csv" , "r" ) as infile: ... data = [line.strip().split( "," ) for line in infile] ... >>> data = data[ 1 :] >>> def print_data(rows): ... print " " .join( " " .join( "{: <16}" . format (s) for s in row) for row in rows) ... >>> print_data(data) young myope no reduced none young myope no normal soft young myope yes reduced none young myope yes normal hard young hypermetrope no reduced none young hypermetrope no normal soft young hypermetrope yes reduced none young hypermetrope yes normal hard pre - presbyopic myope no reduced none pre - presbyopic myope no normal soft pre - presbyopic myope yes reduced none pre - presbyopic myope yes normal hard pre - presbyopic hypermetrope no reduced none pre - presbyopic hypermetrope no normal soft pre - presbyopic hypermetrope yes reduced none pre - presbyopic hypermetrope yes normal none presbyopic myope no reduced none presbyopic myope no normal none presbyopic myope yes reduced none presbyopic myope yes normal hard presbyopic hypermetrope no reduced none presbyopic hypermetrope no normal soft presbyopic hypermetrope yes reduced none presbyopic hypermetrope yes normal none >>> data.sort(key = itemgetter( - 1 )) >>> for value, group in itertools.groupby(data, lambda r: r[ - 1 ]): ... print "-----------" ... print "Group: " + value ... print_data(group) ... - - - - - - - - - - - Group: hard young myope yes normal hard young hypermetrope yes normal hard pre - presbyopic myope yes normal hard presbyopic myope yes normal hard - - - - - - - - - - - Group: none young myope no reduced none young myope yes reduced none young hypermetrope no reduced none young hypermetrope yes reduced none pre - presbyopic myope no reduced none pre - presbyopic myope yes reduced none pre - presbyopic hypermetrope no reduced none pre - presbyopic hypermetrope yes reduced none pre - presbyopic hypermetrope yes normal none presbyopic myope no reduced none presbyopic myope no normal none presbyopic myope yes reduced none presbyopic hypermetrope no reduced none presbyopic hypermetrope yes reduced none presbyopic hypermetrope yes normal none - - - - - - - - - - - Group: soft young myope no normal soft young hypermetrope no normal soft pre - presbyopic myope no normal soft pre - presbyopic hypermetrope no normal soft presbyopic hypermetrope no normal soft |
38、在任意目录启动HTTP服务
python -m SimpleHTTPServer 5000 Serving HTTP on 0.0.0.0 port 5000 ... |
39、Python之禅
>>> import this The Zen of Python, by Tim Peters Beautiful is better than ugly. Explicit is better than implicit. Simple is better than complex . Complex is better than complicated. Flat is better than nested. Sparse is better than dense. Readability counts. Special cases aren"t special enough to break the rules. Although practicality beats purity. Errors should never pass silently. Unless explicitly silenced. In the face of ambiguity, refuse the temptation to guess. There should be one - - and preferably only one - - obvious way to do it. Although that way may not be obvious at first unless you"re Dutch. Now is better than never. Although never is often better than * right * now. If the implementation is hard to explain, it"s a bad idea. If the implementation is easy to explain, it may be a good idea. Namespaces are one honking great idea - - let"s do more of those! |
40、使用C风格的大括号代替Python缩进来表示作用域
>>> from __future__ import braces |
40个你可能不知道的Python的特点和技巧的更多相关文章
- 你所不知道的15个Axure使用技巧
你有用原型开发工具吗?如果有,那你用的是Axure还是别的? 从以前就喜欢使用Axure,主要是觉得它能清楚的表达设计的思路,还有交互的真实再现,能让看的人一目了然,昨天看了这篇博文,便更加确定Axu ...
- 你可能不知道的python
1.如何循环获得下标,使用 enumerate ints = ['a','b','c','d','e','f'] for idx, val in enumerate(ints): print idx, ...
- 你所不知道的Python奇技淫巧
有时候你会看到很Cool的Python代码,你惊讶于它的简洁,它的优雅,你不由自主地赞叹:竟然还能这样写.其实,这些优雅的代码都要归功于Python的特性,只要你能掌握这些Pythonic的技巧,你一 ...
- 不得不知道的Python字符串编码相关的知识
开发经常会遇到各种字符串编码的问题,例如报错SyntaxError: Non-ASCII character 'ascii' codec can't encode characters in posi ...
- 转:11个实用但你可能不知道的Python程序库
原文来自于:http://www.techug.com/11-python-libraries-you-might-not-know 目前,网上已有成千上万个Python包,但几乎没有人能够全部知道它 ...
- 11个实用但你可能不知道的Python程序库
目前,网上已有成千上万个Python包,但几乎没有人能够全部知道它们.单单PyPi上就有超过47000个包列表. 现在,越来越多的数据科学家开始使用Python,虽然他们从pandas,scikit- ...
- 【转载】不得不知道的Python字符串编码相关的知识
原文地址:http://www.cnblogs.com/Xjng/p/5093905.html 开发经常会遇到各种字符串编码的问题,例如报错SyntaxError: Non-ASCII charact ...
- 关于Python你不得不知道的Python语言特点
首先什么是语言?什么是编程? 准确来说是:定义计算机程序的语言,用来向计算机发送指令 个人理解: 语言:是一种交流的工具或者方式.比如我们的汉语普通话.各地的方言.外语中的英语.俄语.日语等.我们 ...
- 你可能不知道的 Python 技巧
英文 | Python Tips and Trick, You Haven't Already Seen 原作 | Martin Heinz (https://martinheinz.dev) 译者 ...
随机推荐
- mysql 数据库复制表 create table city1 like city;
-- 只复制表结构 create table city1 like city; INSERT INTO test2 SELECT * FROM test; -- 上面的表必须存在 -- 复制整张表的数 ...
- [已解决]windows下python3.x与python2.7共存版本pip使用报错问题
> 由于最近要更新插件,突然发现没法使用pip来安装升级插件,查了一圈才找到解决办法,特记录在此,便于其它人查询. 报错信息如下: Fatal error in launcher: Unable ...
- Spring4 MVC+Hibernate4+MySQL+Maven使用注解集成实例
在本教程中,我们将使用基于注解的配置集成Spring和Hibernate. 我们将开发包含表单要求用户输入一个简单的CRUD为导向Web应用程序,使用Hibernate保存输入的数据到 MySQL 数 ...
- Spring MVC错误处理
以下示例显示如何在使用Spring Web MVC框架的表单中使用错误处理和验证器.首先使用Eclipse IDE来创建一个WEB工程,实现一个输入用户信息提交验证提示的功能.并按照以下步骤使用Spr ...
- 图像sift配准后融合
image rectification 图像校正 在配准时,先找到特征点,找到特征点后剔除伪匹配点. 然后针对两幅图像做几何矫正(一般通过估计出来的仿射矩阵完成). 这部完成后,图像可以匹配了,但是两 ...
- day4笔记
今日讲解内容:1,int数字:运算.1 ,2,3... # 数字类型:int #范围.用于运算, + - * / // %.... bit_lenth :十进制数字用二进制表示的最小位数 a=10 p ...
- MySQL中的聚合函数
创建student表 CREATE TABLE IF NOT EXISTS `student` ( `id` int(4) unsigned NOT NULL AUTO_INCREMENT, `nam ...
- jsx编译器 atom
开始学习react es6 觉得没有合适的编译器.于是找到了个Atom. 官网 https://atom.io/ 下载安装. 双击运行即可完成安装. 安装后点击 file>setting> ...
- Instapaper 使用经验和技巧
Instapaper 分类本质是文件夹整理,没有标签. 文件夹意味着一篇文章只能放在一个文件夹里,不像标签可以实现一篇文章多个标签的功能. 一.文件夹和Like功能 1.已有文件夹: Home:存放所 ...
- shell脚本中格式化日期
date [-u] [-d datestr] [-s datestr] [--utc] [--universal] [--date=datestr] [--set=datestr] [--help] ...