At the children's day, the child came to Picks's house, and messed his house up. Picks was angry at him. A lot of important things were lost, in particular the favorite sequence of Picks.

Fortunately, Picks remembers how to repair the sequence. Initially he should create an integer array a[1], a[2], ..., a[n]. Then he should perform a sequence of m operations. An operation can be one of the following:

  1. Print operation l, r. Picks should write down the value of .
  2. Modulo operation l, r, x. Picks should perform assignment a[i] = a[imod x for each i (l ≤ i ≤ r).
  3. Set operation k, x. Picks should set the value of a[k] to x (in other words perform an assignment a[k] = x).

Can you help Picks to perform the whole sequence of operations?

Input

The first line of input contains two integer: n, m (1 ≤ n, m ≤ 105). The second line contains n integers, separated by space: a[1], a[2], ..., a[n] (1 ≤ a[i] ≤ 109) — initial value of array elements.

Each of the next m lines begins with a number type .

  • If type = 1, there will be two integers more in the line: l, r (1 ≤ l ≤ r ≤ n), which correspond the operation 1.
  • If type = 2, there will be three integers more in the line: l, r, x (1 ≤ l ≤ r ≤ n; 1 ≤ x ≤ 109), which correspond the operation 2.
  • If type = 3, there will be two integers more in the line: k, x (1 ≤ k ≤ n; 1 ≤ x ≤ 109), which correspond the operation 3.

Output

For each operation 1, please print a line containing the answer. Notice that the answer may exceed the 32-bit integer.

Examples

Input
5 5
1 2 3 4 5
2 3 5 4
3 3 5
1 2 5
2 1 3 3
1 1 3
Output
8
5
Input
10 10
6 9 6 7 6 1 10 10 9 5
1 3 9
2 7 10 9
2 5 10 8
1 4 7
3 3 7
2 7 9 9
1 2 4
1 6 6
1 5 9
3 1 10
Output
49
15
23
1
9

Note

Consider the first testcase:

  • At first, a = {1, 2, 3, 4, 5}.
  • After operation 1, a = {1, 2, 3, 0, 1}.
  • After operation 2, a = {1, 2, 5, 0, 1}.
  • At operation 3, 2 + 5 + 0 + 1 = 8.
  • After operation 4, a = {1, 2, 2, 0, 1}.
  • At operation 5, 1 + 2 + 2 = 5.

题意:给出数组,有三种操作,分别是区间求和,区间取模 ,单点修改。

思路:一个点被取模,那么其大小减半,所以一个数最多被操作log次,这样的话就不难想到势能线段树。

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=;
int Mx[maxn<<]; ll sum[maxn<<];
void build(int Now,int L,int R)
{
if(L==R){
scanf("%d",&Mx[Now]);
sum[Now]=Mx[Now]; return ;
}
int Mid=(L+R)>>;
build(Now<<,L,Mid); build(Now<<|,Mid+,R);
Mx[Now]=max(Mx[Now<<],Mx[Now<<|]);
sum[Now]=sum[Now<<]+sum[Now<<|];
}
ll query(int Now,int L,int R,int l,int r){
if(l<=L&&r>=R) return sum[Now];
int Mid=(L+R)>>; ll res=;
if(l<=Mid) res+=query(Now<<,L,Mid,l,r);
if(r>Mid) res+=query(Now<<|,Mid+,R,l,r);
return res;
}
void change(int Now,int L,int R,int pos,int val)
{
if(L==R){
Mx[Now]=val; sum[Now]=val; return ;
}
int Mid=(L+R)>>;
if(pos<=Mid) change(Now<<,L,Mid,pos,val);
else change(Now<<|,Mid+,R,pos,val);
Mx[Now]=max(Mx[Now<<],Mx[Now<<|]);
sum[Now]=sum[Now<<]+sum[Now<<|];
}
void modp(int Now,int L,int R,int l,int r,int P)
{
if(Mx[Now]<P) return ;
if(L==R) {
Mx[Now]%=P; sum[Now]=Mx[Now]; return ;
}
int Mid=(L+R)>>;
if(l<=Mid) modp(Now<<,L,Mid,l,r,P);
if(r>Mid) modp(Now<<|,Mid+,R,l,r,P);
Mx[Now]=max(Mx[Now<<],Mx[Now<<|]);
sum[Now]=sum[Now<<]+sum[Now<<|];
}
int main()
{
int N,M,opt,L,R,P;
scanf("%d%d",&N,&M);
build(,,N);
while(M--){
scanf("%d",&opt);
if(opt==) {
scanf("%d%d",&L,&R);
printf("%I64d\n",query(,,N,L,R));
}
else if(opt==){
scanf("%d%d%d",&L,&R,&P);
modp(,,N,L,R,P);
}
else {
scanf("%d%d",&L,&R);
change(,,N,L,R);
}
}
return ;
}

CodeForces - 438D: The Child and Sequence(势能线段树)的更多相关文章

  1. 2018.07.23 codeforces 438D. The Child and Sequence(线段树)

    传送门 线段树维护区间取模,单点修改,区间求和. 这题老套路了,对一个数来说,每次取模至少让它减少一半,这样每次单点修改对时间复杂度的贡献就是一个log" role="presen ...

  2. Codeforces 438D (今日gg模拟第二题) | 线段树 考察时间复杂度的计算 -_-|||

    Codeforces 438D The Child and Sequence 给出一个序列,进行如下三种操作: 区间求和 区间每个数模x 单点修改 如果没有第二个操作的话,就是一棵简单的线段树.那么如 ...

  3. Codeforces 438D The Child and Sequence - 线段树

    At the children's day, the child came to Picks's house, and messed his house up. Picks was angry at ...

  4. CodeForces 438D The Child and Sequence (线段树 暴力)

    传送门 题目大意: 给你一个序列,要求在序列上维护三个操作: 1)区间求和 2)区间取模 3)单点修改 这里的操作二很讨厌,取模必须模到叶子节点上,否则跑出来肯定是错的.没有操作二就是线段树水题了. ...

  5. 题解——CodeForces 438D The Child and Sequence

    题面 D. The Child and Sequence time limit per test 4 seconds memory limit per test 256 megabytes input ...

  6. Codeforces Round #250 (Div. 1) D. The Child and Sequence(线段树)

    D. The Child and Sequence time limit per test 4 seconds memory limit per test 256 megabytes input st ...

  7. codeforces 284 C. Cows and Sequence(线段树)

    题目链接:http://codeforces.com/contest/284/problem/C 题意:就是给出3个操作 1)是将前i 个数加x 2)在数组最后添加一个数x 3)删除数组最后的那个数 ...

  8. [CF438D]The Child and Sequence【线段树】

    题目大意 区间取模,区间求和,单点修改. 分析 其实算是一道蛮简单的水题. 首先线段树非常好解决后两个操作,重点在于如何解决区间取模的操作. 一开始想到的是暴力单点修改,但是复杂度就飙到了\(mnlo ...

  9. CF438D The Child and Sequence(线段树)

    题目链接:CF原网  洛谷 题目大意:维护一个长度为 $n$ 的正整数序列 $a$,支持单点修改,区间取模,区间求和.共 $m$ 个操作. $1\le n,m\le 10^5$.其它数均为非负整数且 ...

  10. 【CF438D】The Child and Sequence(线段树)

    点此看题面 大致题意: 给你一个序列,让你支持区间求和.区间取模.单点修改操作. 区间取模 区间求和和单点修改显然都很好维护吧,难的主要是区间取模. 取模标记无法叠加,因此似乎只能暴力搞? 实际上,我 ...

随机推荐

  1. oracle 函数 截取 连接 替换 判断

    一个处理不规范日期的函数,廖记一下吧,以免再忘. --注意全角半角 CREATE OR REPLACE function f_str2form( date_string in varchar2 ) r ...

  2. pyhton3 re模块

    本文转自 AstralWind 的博客:Python正则表达式指南 特来收藏 1. 正则表达式基础 1.1. 简单介绍 正则表达式并不是Python的一部分.正则表达式是用于处理字符串的强大工具,拥有 ...

  3. Web前端开发的基本要求和认识

    Web前端开发技术包括三个要素:HTML.CSS和JavaScript,但随着RIA的流行和普及,Flash/Flex.Silverlight.XML和服务器端语言也是前端开发工程师应该掌握的.Web ...

  4. 【leetcode刷题笔记】Text Justification

    Given an array of words and a length L, format the text such that each line has exactly L characters ...

  5. Docker容器技术-优化Docker镜像

    一.优化Docker镜像 1.降低部署时间 一个大的Docker应用是如何影响在新Docker宿主机上的部署时间. (1)编写Dockerfile创建一个大Docker镜像 [root@bogon ~ ...

  6. 二、linux题型

    1.[root@pyrene ~]# 这里root是当前登录用户  @分割     pyrene是主机名    -:表示当前登录环境   #:表示管理员 2.在/data下面创建一个文件oldboy. ...

  7. Kubernetes Controller Manager

    Controller Manager 作为集群内部的管理控制中心,负责集群内的Node.Pod副本.Service Endpoint.NameSpace.ServiceAccount.Resource ...

  8. 开机启动顺序rc.local与chkconfig的不同

    /etc/rc.local文件有如下两行/etc/init.d/mysql start/etc/init.d/keepalived start /etc/rc.local是按脚本的顺序一个启动后启动下 ...

  9. 算法总结之 在两个排序数组中找到第K小的数

    给定两个有序数组arr1 和 arr2 ,再给定一个int K,返回所有的数中第K小的数 要求长度如果分别为 N M,时间复杂度O(log(min{M,N}),额外空间复杂度O(1) 解决此题的方法跟 ...

  10. Tensorflow 从零开始

    1.安装pip pip是一个用于管理和安装Python包的工具,类似于LINUX 的yum命令一样! 命令(Ubuntu系统):sudo apt-get install python-pip 验证安装 ...