E. Ann and Half-Palindrome
time limit per test

1.5 seconds

memory limit per test

512 megabytes

input

standard input

output

standard output

Tomorrow Ann takes the hardest exam of programming where she should get an excellent mark.

On the last theoretical class the teacher introduced the notion of a half-palindrome.

String t is a half-palindrome, if for all the odd positions i ()
the following condition is held: ti = t|t| - i + 1,
where |t| is the length of string tif
positions are indexed from 1. For example, strings "abaa",
"a", "bb", "abbbaa"
are half-palindromes and strings "ab", "bba"
and "aaabaa" are not.

Ann knows that on the exam she will get string s, consisting only of letters a and b,
and number k. To get an excellent mark she has to find the k-th
in the lexicographical order string among all substrings of s that are half-palyndromes. Note that each substring in this order is
considered as many times as many times it occurs in s.

The teachers guarantees that the given number k doesn't exceed the number of substrings of the given string that are half-palindromes.

Can you cope with this problem?

Input

The first line of the input contains string s (1 ≤ |s| ≤ 5000),
consisting only of characters 'a' and 'b',
where |s| is the length of string s.

The second line contains a positive integer k —  the lexicographical number of the requested string among all the half-palindrome substrings
of the given string s. The strings are numbered starting from one.

It is guaranteed that number k doesn't exceed the number of substrings of the given string that are half-palindromes.

Output

Print a substring of the given string that is the k-th in the lexicographical order of all substrings of the given string that are
half-palindromes.

Sample test(s)
input
abbabaab
7
output
abaa
input
aaaaa
10
output
aaa
input
bbaabb
13
output
bbaabb
Note

By definition, string a = a1a2... an is
lexicographically less than string b = b1b2... bm,
if either a is a prefix of b and
doesn't coincide withb, or there exists such i,
that a1 = b1, a2 = b2, ... ai - 1 = bi - 1, ai < bi.

In the first sample half-palindrome substrings are the following strings — a, a, a, a, aa, aba, abaa, abba, abbabaa, b, b, b, b, baab,bab, bb, bbab, bbabaab (the
list is given in the lexicographical order).


http://codeforces.com/contest/557/problem/E

大致题意:找出s的子串中字典序第k小的“半回文串”,给出半回文串定义是:对于随意i<=|s|/2 有s[i] = s[len-i+1]

数据量是5000

O(n^2)的算法可行

简单暴力的方法就是n^2 dp 出(i,j)的子串是不是半回文串,再把全部子串插入字典树。在dfs遍历出第k小的串

方法二,dp[i][j]统计出以i为始端到i~j的子串是回文串的总数。再把全部子串插入字典树,然后二分出答案子串。

方法一:

#include <iostream>
#include <cstring>
#include <cmath>
#include <queue>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <vector>
#include <cstdio>
#include <ctime>
#include <bitset>
#include <algorithm>
#define SZ(x) ((int)(x).size())
#define ALL(v) (v).begin(), (v).end()
#define foreach(i, v) for (__typeof((v).begin()) i = (v).begin(); i != (v).end(); ++ i)
#define REP(i,n) for ( int i=1; i<=int(n); i++ )
using namespace std;
typedef long long ll; const int N = 5000+5;
int dp[N][N];
char s[N];
int k;
int n;
struct node
{
node *son[2];
int cnt;
node()
{
memset(son,0,sizeof(son));
cnt = 0;
}
}trie[N*N];
int SZ = 0;
node *root,*cur;
node *createnode()
{
return &trie[SZ++];
}
void Insert(int p)
{
cur = root;
for(int i = p;i <= n;i++)
{
int val = s[i]-'a';
if(cur->son[val] == NULL) cur->son[val] = createnode();
cur = cur->son[val];
cur->cnt += dp[p][i];
}
}
int getsum(node *cur)
{
int sum = 0;
if(cur->son[0]) sum += getsum(cur->son[0]);
if(cur->son[1]) sum += getsum(cur->son[1]);
cur->cnt += sum;
return cur->cnt;
}
vector<char>ans;
bool dfs(node *cur,int &k)
{
if( k <= 0) return true;
if(cur->son[0])
{
ans.push_back('a');
if(cur->son[0]->cnt) k -= cur->son[0]->cnt;
if(dfs(cur->son[0],k)) return true;
ans.pop_back();
}
if(cur->son[1])
{
ans.push_back('b');
if(cur->son[1]->cnt)k -= cur->son[1]->cnt;
if(dfs(cur->son[1],k)) return true;
ans.pop_back();
}
return false;
}
int main()
{
scanf("%s%d",s+1,&k);
n = strlen(s+1);
for(int i =0;i <= n+2;i++)
for(int j = i;j >= 0;j--)
dp[i][j] = 1;
for(int len = 2;len <= n;len++)
for(int l = 1;l+len-1 <= n;l++)
{
int r = l+len-1;
dp[l][r] = (s[l] == s[r] && dp[l+2][r-2]);
}
root = createnode();
REP(i,n)Insert(i);
dfs(root,k);
foreach(i,ans) putchar(*i);
}

方法二:

//GNU C++	Accepted	374 ms	392200 KB
#include <iostream>
#include <cstring>
#include <cmath>
#include <queue>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <vector>
#include <cstdio>
#include <ctime>
#include <bitset>
#include <algorithm>
#define SZ(x) ((int)(x).size())
#define ALL(v) (v).begin(), (v).end()
#define foreach(i, v) for (__typeof((v).begin()) i = (v).begin(); i != (v).end(); ++ i)
#define REP(i,n) for ( int i=1; i<=int(n); i++ )
using namespace std;
typedef long long ll; const int N = 5000+5;
int dp[N][N];
char s[N];
int k;
int n;
struct node
{
node *son[2];
int cnt;
node()
{
memset(son,0,sizeof(son));
cnt = 0;
}
}trie[N*N];
int SZ = 0;
node *root,*cur;
node *createnode()
{
return &trie[SZ++];
}
void Insert(int p)
{
cur = root;
for(int i = p;i <= n;i++)
{
int val = s[i]-'a';
if(cur->son[val] == NULL) cur->son[val] = createnode();
cur = cur->son[val];
if(i != p)cur->cnt += dp[p][n]-dp[p][i-1];
else cur->cnt += dp[p][n];
}
} void query(node*cur,int k) //二分过程
{
if(k <= 0) return ;
if(cur->son[0] && cur->son[0]->cnt >= k)
{
int cnt = cur->son[0]->cnt;
cur = cur->son[0];
if(cur->son[0]) cnt -= cur->son[0]->cnt;
if(cur->son[1]) cnt -= cur->son[1]->cnt;
putchar('a');
query(cur,k-cnt);
}
else if(cur->son[1])
{
if(cur->son[0]) k -= cur->son[0]->cnt;
int cnt = cur->son[1]->cnt;
cur = cur->son[1];
if(cur->son[0]) cnt -= cur->son[0]->cnt;
if(cur->son[1]) cnt -= cur->son[1]->cnt;
putchar('b');
query(cur,k-cnt);
}
} int main()
{
scanf("%s%d",s+1,&k);
n = strlen(s+1);
for(int i =0;i <= n+2;i++)
for(int j = i;j >= 0;j--)
dp[i][j] = 1;
for(int len = 2;len <= n;len++)
for(int l = 1;l+len-1 <= n;l++)
{
int r = l+len-1;
dp[l][r] = (s[l] == s[r] && dp[l+2][r-2]);
} REP(i,n)
for(int j = i+1;j <= n;j++) dp[i][j] += dp[i][j-1];
root = createnode();
REP(i,n) Insert(i);
query(root,k);
}

Codeforces Round #311 (Div. 2) E - Ann and Half-Palindrome(字典树+dp)的更多相关文章

  1. Codeforces Round #311 (Div. 2) E. Ann and Half-Palindrome 字典树/半回文串

    E. Ann and Half-Palindrome Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contes ...

  2. Codeforces Round #343 (Div. 2) D - Babaei and Birthday Cake 线段树+DP

    题意:做蛋糕,给出N个半径,和高的圆柱,要求后面的体积比前面大的可以堆在前一个的上面,求最大的体积和. 思路:首先离散化蛋糕体积,以蛋糕数量建树建树,每个节点维护最大值,也就是假如节点i放在最上层情况 ...

  3. Codeforces Round #338 (Div. 2) B. Longtail Hedgehog 记忆化搜索/树DP

    B. Longtail Hedgehog   This Christmas Santa gave Masha a magic picture and a pencil. The picture con ...

  4. Codeforces Round #311 (Div. 2) A,B,C,D,E

    A. Ilya and Diplomas 思路:水题了, 随随便便枚举一下,分情况讨论一下就OK了. code: #include <stdio.h> #include <stdli ...

  5. Codeforces Round #311 (Div. 2) D. Vitaly and Cycle 图论

    D. Vitaly and Cycle Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/557/p ...

  6. Codeforces Round #311 (Div. 2) C. Arthur and Table Multiset

    C. Arthur and Table Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/557/p ...

  7. Codeforces Round #311 (Div. 2)B. Pasha and Tea 水题

    B. Pasha and Tea Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/557/prob ...

  8. Codeforces Round #311 (Div. 2) A. Ilya and Diplomas 水题

    A. Ilya and Diplomas Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/557/ ...

  9. Codeforces Round #311 (Div. 2)题解

    A. Ilya and Diplomas time limit per test 1 second memory limit per test 256 megabytes input standard ...

随机推荐

  1. uploadify3.1 参数 中文详解

    langFile: 'http://www.static-xxx.nu/uploader/uploadifyLang_en.js',//语言包的路径,能设置所有的提示文字 swf: 'http://w ...

  2. RPC 实现

    PC,即 Remote Procedure Call(远程过程调用),说得通俗一点就是:调用远程计算机上的服务,就像调用本地服务一样. RPC 可基于 HTTP 或 TCP 协议,Web Servic ...

  3. jquery之onchange事件2

    <%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding= ...

  4. atoi()、inet_addr()等函数 time.h文件

    1.atoi() 原型:int atoi(const char *nptr); 函数说明:参数nptr字符串,如果第一个非空格字符存在,是数字或者正负号则开始做类型转换,之后检测到非数字(包括结束符 ...

  5. 监听键盘 防止输入时覆盖掉textfiled

    [[NSNotificationCenter defaultCenter] addObserver:self selector:@selector(keyboardwasChange:) name:U ...

  6. JSON.parse(),JSON.stringify(),jQuery.parseJSON()的用法

    1. JSON.parse(jsonString): 在一个字符串中解析出JSON对象 var str = '[{"href":"baidu.com",&quo ...

  7. 《javascript设计模式》--接口

    关于javascript设计模式书中的接口,记录如下 //TODO  增加了一个判断条件,可以只在生产环境中调用 接口var Interface = function(name,methods){ i ...

  8. JS判断手机端和PC端自动跳转

    <script type="text/javascript">     function browserRedirect() {     var sUserAgent ...

  9. 关于css中overflow的一些理解

    在做移动端开发的时候,遇到过这么个问题:要把图片进行放大,但有时候图片比较长,一个手机的版面看不了,于是需要用到overflow的属性,刚开始用了overflow-y:scroll, 于是问题来了,如 ...

  10. QT打开网页 QURL

    用QT打开一个网页就是先定义一个QUrl对象url,然后利用QDesktopServices::open(url)即可. 例如: const QUrl url(http://www.baidu.com ...