Matrix Chain Multiplication 

Suppose you have to evaluate an expression like A*B*C*D*E where A,B,C,D and E are matrices. Since matrix multiplication is associative, the order in which multiplications are performed is arbitrary. However, the number of elementary multiplications needed strongly depends on the evaluation order you choose.

For example, let A be a 50*10 matrix, B a 10*20 matrix and C a 20*5 matrix. There are two different strategies to compute A*B*C, namely (A*B)*C and A*(B*C).

The first one takes 15000 elementary multiplications, but the second one only 3500.

Your job is to write a program that determines the number of elementary multiplications needed for a given evaluation strategy.

Input Specification

Input consists of two parts: a list of matrices and a list of expressions.

The first line of the input file contains one integer n (  ), representing the number of matrices in the first part. The next n lines each contain one capital letter, specifying the name of the matrix, and two integers, specifying the number of rows and columns of the matrix.

The second part of the input file strictly adheres to the following syntax (given in EBNF):

SecondPart = Line { Line } <EOF>
Line = Expression <CR>
Expression = Matrix | "(" Expression Expression ")"
Matrix = "A" | "B" | "C" | ... | "X" | "Y" | "Z"

Output Specification

For each expression found in the second part of the input file, print one line containing the word "error" if evaluation of the expression leads to an error due to non-matching matrices. Otherwise print one line containing the number of elementary multiplications needed to evaluate the expression in the way specified by the parentheses.

Sample Input

9
A 50 10
B 10 20
C 20 5
D 30 35
E 35 15
F 15 5
G 5 10
H 10 20
I 20 25
A
B
C
(AA)
(AB)
(AC)
(A(BC))
((AB)C)
(((((DE)F)G)H)I)
(D(E(F(G(HI)))))
((D(EF))((GH)I))

Sample Output

0
0
0
error
10000
error
3500
15000
40500
47500
15125

题解:矩阵链乘,让求计算矩阵连成后运算的次序;注意There are two different strategies to compute A*B*C, namely (A*B)*C and A*(B*C).也就是说两个相乘必定会出现括号的所以遇见括号不用记录(位置就可以了;

代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
using namespace std;
const int INF=0x3f3f3f3f;
const double PI=acos(-1.0);
#define mem(x,y) memset(x,y,sizeof(x))
#define SI(x) scanf("%d",&x)
#define SL(x) scanf("%lld",&x)
#define PI(x) printf("%d",x)
#define PL(x) printf("%lld",x)
#define P_ printf(" ");
typedef long long LL;
struct Node{
int r,l;
Node(int x=0,int y=0):r(x),l(y){}
};
Node dt[30];
int main(){
int n,x,y;
char s[1010];
scanf("%d",&n);
mem(dt,0);
while(n--){
scanf("%s",s);
scanf("%d%d",&x,&y);
dt[s[0]-'A'].r=x;
dt[s[0]-'A'].l=y;
}
while(~scanf("%s",s)){
stack<Node>S;
int len=strlen(s);
Node a,b;
int ans=0,flot=1;
for(int i=0;i<len;i++){
if(isalpha(s[i])){
S.push(dt[s[i]-'A']);
}
else if(s[i]==')'){
b=S.top();S.pop();
a=S.top();S.pop();
//printf("%d %d\n",a.l,b.r);
if(a.l!=b.r){
flot=0;break;
}
ans+=a.r*a.l*b.l;
S.push(Node(a.r,b.l));
}
}
if(flot)
printf("%d\n",ans);
else puts("error");
}
return 0;
}

  

UVA-Matrix Chain Multiplication(栈)的更多相关文章

  1. UVa442 Matrix Chain Multiplication(栈)

    #include<cstdio>#include<cstring> #include<stack> #include<algorithm> #inclu ...

  2. UVa 442 Matrix Chain Multiplication(矩阵链,模拟栈)

    意甲冠军  由于矩阵乘法计算链表达的数量,需要的计算  后的电流等于行的矩阵的矩阵的列数  他们乘足够的人才  非法输出error 输入是严格合法的  即使仅仅有两个相乘也会用括号括起来  并且括号中 ...

  3. UVA 442 二十 Matrix Chain Multiplication

    Matrix Chain Multiplication Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %l ...

  4. 例题6-3 Matrix Chain Multiplication ,Uva 442

    这个题思路没有任何问题,但还是做了近三个小时,其中2个多小时调试 得到的经验有以下几点: 一定学会调试,掌握输出中间量的技巧,加强gdb调试的学习 有时候代码不对,得到的结果却是对的(之后总结以下常见 ...

  5. Matrix Chain Multiplication(表达式求值用栈操作)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1082 Matrix Chain Multiplication Time Limit: 2000/100 ...

  6. UVA——442 Matrix Chain Multiplication

    442 Matrix Chain MultiplicationSuppose you have to evaluate an expression like A*B*C*D*E where A,B,C ...

  7. ACM学习历程——UVA442 Matrix Chain Multiplication(栈)

    Description   Matrix Chain Multiplication  Matrix Chain Multiplication  Suppose you have to evaluate ...

  8. UVa442 Matrix Chain Multiplication

    // UVa442 Matrix Chain Multiplication // 题意:输入n个矩阵的维度和一些矩阵链乘表达式,输出乘法的次数.假定A和m*n的,B是n*p的,那么AB是m*p的,乘法 ...

  9. Matrix Chain Multiplication[HDU1082]

    Matrix Chain Multiplication Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

  10. UVa 442 (栈) Matrix Chain Multiplication

    题意: 给出一个矩阵表达式,计算总的乘法次数. 分析: 基本的数学知识:一个m×n的矩阵A和n×s的矩阵B,计算AB的乘法次数为m×n×s.只有A的列数和B的行数相等时,两个矩阵才能进行乘法运算. 表 ...

随机推荐

  1. less的学习(css)

    因为新公司需要用less来写样式,对于用惯了css的我来说还是觉得有点麻烦 但是呢,都是有个过程嘛,学习必须走起嘛. 写到半中央发现一个写的特别好的less帖子,就不写. http://www.w3c ...

  2. Android StrictMode介绍

    转:http://www.blueowls.net/android-strictmode%E4%BB%8B%E7%BB%8D/ /** * enables "strict mode" ...

  3. ListView的简单使用和性能优化

    起源:ListView是Android开发中使用最广泛的一种控件,它以垂直列表的形式显示所有列表项. 创建ListView有两种方式: ☆ 直接使用ListView进行创建. ☆让Activity继承 ...

  4. Android 使用Jsoup解析Html

    想要做一个看新闻的应用,类似Cnbeta客户端的东西.大致思路如下:根据链接获取新闻列表页的html代码,然后解析,找到所有的新闻标题和新闻链接用listView显示,当点击ListView的Item ...

  5. 紫薇~还记得大明湖畔的HTML5智力拼图吗?

    曲线谜团是非常有趣的HTML5智力游戏,据说超过多少分会有惊喜,游戏简单易操作,偶尔抛弃那种杀死脑细胞的大型游戏,玩玩这种简单经典的益智小游戏,放松放松,也是不错的选择嘛-将游戏 通过 统一开发环境( ...

  6. 清风注解-Swift程序设计语言:Point6~10

    目录索引 清风注解-Swift程序设计语言 Point 6. 输出常量和变量 代码事例: // 输出的内容会在最后换行 println("hello, world") // 输出的 ...

  7. js获取手机重力感应api

    <html> <head> <title>DeviceOrientationEvent</title> <meta charset="U ...

  8. 关于Apacheserver的訪问控制

    Apache的訪问控制指对不论什么资源的不论什么方式的訪问控制. 一.基于主机或者IP地址的控制 这样的訪问控制基于訪问者的主机名或者IP地址,通过使用 Deny 和 Allow 指令.实现同意或者禁 ...

  9. Python下载Bing主页图片

    直接上代码: # -*- coding: cp936 -*- import urllib import os print 'Download data......' url = 'http://cn. ...

  10. JavaScript之Style属性学习

    当CSS使用伪类开始侵入DOM和JavaSCript所控制着的行为层时,DOM和JavaScript也使用他们的一系列样式去控制表现层,这篇随笔主要说的就是利用JavaScript去控制元素的表现形式 ...