Matrix Chain Multiplication 

Suppose you have to evaluate an expression like A*B*C*D*E where A,B,C,D and E are matrices. Since matrix multiplication is associative, the order in which multiplications are performed is arbitrary. However, the number of elementary multiplications needed strongly depends on the evaluation order you choose.

For example, let A be a 50*10 matrix, B a 10*20 matrix and C a 20*5 matrix. There are two different strategies to compute A*B*C, namely (A*B)*C and A*(B*C).

The first one takes 15000 elementary multiplications, but the second one only 3500.

Your job is to write a program that determines the number of elementary multiplications needed for a given evaluation strategy.

Input Specification

Input consists of two parts: a list of matrices and a list of expressions.

The first line of the input file contains one integer n (  ), representing the number of matrices in the first part. The next n lines each contain one capital letter, specifying the name of the matrix, and two integers, specifying the number of rows and columns of the matrix.

The second part of the input file strictly adheres to the following syntax (given in EBNF):

SecondPart = Line { Line } <EOF>
Line = Expression <CR>
Expression = Matrix | "(" Expression Expression ")"
Matrix = "A" | "B" | "C" | ... | "X" | "Y" | "Z"

Output Specification

For each expression found in the second part of the input file, print one line containing the word "error" if evaluation of the expression leads to an error due to non-matching matrices. Otherwise print one line containing the number of elementary multiplications needed to evaluate the expression in the way specified by the parentheses.

Sample Input

9
A 50 10
B 10 20
C 20 5
D 30 35
E 35 15
F 15 5
G 5 10
H 10 20
I 20 25
A
B
C
(AA)
(AB)
(AC)
(A(BC))
((AB)C)
(((((DE)F)G)H)I)
(D(E(F(G(HI)))))
((D(EF))((GH)I))

Sample Output

0
0
0
error
10000
error
3500
15000
40500
47500
15125

题解:矩阵链乘,让求计算矩阵连成后运算的次序;注意There are two different strategies to compute A*B*C, namely (A*B)*C and A*(B*C).也就是说两个相乘必定会出现括号的所以遇见括号不用记录(位置就可以了;

代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
using namespace std;
const int INF=0x3f3f3f3f;
const double PI=acos(-1.0);
#define mem(x,y) memset(x,y,sizeof(x))
#define SI(x) scanf("%d",&x)
#define SL(x) scanf("%lld",&x)
#define PI(x) printf("%d",x)
#define PL(x) printf("%lld",x)
#define P_ printf(" ");
typedef long long LL;
struct Node{
int r,l;
Node(int x=0,int y=0):r(x),l(y){}
};
Node dt[30];
int main(){
int n,x,y;
char s[1010];
scanf("%d",&n);
mem(dt,0);
while(n--){
scanf("%s",s);
scanf("%d%d",&x,&y);
dt[s[0]-'A'].r=x;
dt[s[0]-'A'].l=y;
}
while(~scanf("%s",s)){
stack<Node>S;
int len=strlen(s);
Node a,b;
int ans=0,flot=1;
for(int i=0;i<len;i++){
if(isalpha(s[i])){
S.push(dt[s[i]-'A']);
}
else if(s[i]==')'){
b=S.top();S.pop();
a=S.top();S.pop();
//printf("%d %d\n",a.l,b.r);
if(a.l!=b.r){
flot=0;break;
}
ans+=a.r*a.l*b.l;
S.push(Node(a.r,b.l));
}
}
if(flot)
printf("%d\n",ans);
else puts("error");
}
return 0;
}

  

UVA-Matrix Chain Multiplication(栈)的更多相关文章

  1. UVa442 Matrix Chain Multiplication(栈)

    #include<cstdio>#include<cstring> #include<stack> #include<algorithm> #inclu ...

  2. UVa 442 Matrix Chain Multiplication(矩阵链,模拟栈)

    意甲冠军  由于矩阵乘法计算链表达的数量,需要的计算  后的电流等于行的矩阵的矩阵的列数  他们乘足够的人才  非法输出error 输入是严格合法的  即使仅仅有两个相乘也会用括号括起来  并且括号中 ...

  3. UVA 442 二十 Matrix Chain Multiplication

    Matrix Chain Multiplication Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %l ...

  4. 例题6-3 Matrix Chain Multiplication ,Uva 442

    这个题思路没有任何问题,但还是做了近三个小时,其中2个多小时调试 得到的经验有以下几点: 一定学会调试,掌握输出中间量的技巧,加强gdb调试的学习 有时候代码不对,得到的结果却是对的(之后总结以下常见 ...

  5. Matrix Chain Multiplication(表达式求值用栈操作)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1082 Matrix Chain Multiplication Time Limit: 2000/100 ...

  6. UVA——442 Matrix Chain Multiplication

    442 Matrix Chain MultiplicationSuppose you have to evaluate an expression like A*B*C*D*E where A,B,C ...

  7. ACM学习历程——UVA442 Matrix Chain Multiplication(栈)

    Description   Matrix Chain Multiplication  Matrix Chain Multiplication  Suppose you have to evaluate ...

  8. UVa442 Matrix Chain Multiplication

    // UVa442 Matrix Chain Multiplication // 题意:输入n个矩阵的维度和一些矩阵链乘表达式,输出乘法的次数.假定A和m*n的,B是n*p的,那么AB是m*p的,乘法 ...

  9. Matrix Chain Multiplication[HDU1082]

    Matrix Chain Multiplication Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

  10. UVa 442 (栈) Matrix Chain Multiplication

    题意: 给出一个矩阵表达式,计算总的乘法次数. 分析: 基本的数学知识:一个m×n的矩阵A和n×s的矩阵B,计算AB的乘法次数为m×n×s.只有A的列数和B的行数相等时,两个矩阵才能进行乘法运算. 表 ...

随机推荐

  1. poj 3378 Crazy Thairs dp+线段树+大数

    题目链接 题目大意: 给出n个数, 让你求出有多少个5元组满足 i < j < k < l < m并且ai < aj < ak < al < am 我们 ...

  2. MVC4,MVC3,VS2012+ entity framework Migration from Sqlserver to Mysql

    在开发的初期个人认为因VS与Sqlserver的配合很默契,即可以方便的实现Code First,又可以使用SqlServer Manager很漂亮的进行建模与变更,也许是个人的使用习惯MS的界面做的 ...

  3. 限定只能处理"A仓"和"B仓"入库

    应用 Oracle Inventory 层 Level Function 函数名 Funcgtion Name INV_INVTTMTX_MISC 表单名 Form Name INVTTMTX 说明 ...

  4. C#版-百度网盘API的实现(二)

    在这篇文章中,我们通过代码来实现百度网盘的简单操作, 一,登陆,在代码中,我有一个Baidu1的类,实例化该类时回执行登陆方法,该类对外开放了三个方法, 1,GetFileDir获取根目录下的文件夹及 ...

  5. QWebView 显示本地HTML 文件

    QWebView 显示本地HTML文件的时候,如果直接使用 webView->load(QUrl(QString("file:///c:\\a.html")); 可能会导致a ...

  6. IOSJSBRIGE商品内容模板

    <p> 内容 </p> <script> window.onerror = function(err) { log('window.onerror: ' + err ...

  7. Android自定义View研究--View中的原点坐标和XML中布局自定义View时View触摸原点问题

    这里只做个汇总~.~独一无二 文章出处:http://blog.csdn.net/djy1992/article/details/9715047 Android自定义View研究--View中的原点坐 ...

  8. JAVA代码静态检测之PMD

    今天再次想启动Java代码静态检测工具的利用问题,主要再次尝试用了PMD,发现不少代码编码规范问题和好的代码建议,并学到不少自己之前没有注意到的Java方便的基础知识,感觉很不错,把相关明白的好的规则 ...

  9. Ubuntu下获取Nexus7的Root权限

    一.准备 下载获取Root权限的工具包. 下载地址: http://downloadandroidrom.com/file/Nexus7/rooting/Nexus7Root.zip 二.解锁 Ubu ...

  10. Quality Over Quantity: 更少一些,更好一些_第1页_福布斯中文网

    Quality Over Quantity: 更少一些,更好一些_第1页_福布斯中文网     Quality Over Quantity: 更少一些,更好一些    2013年04月09日     ...