It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a prime and twice a square.

9 = 7 + 212
15 = 7 + 222
21 = 3 + 232
25 = 7 + 232
27 = 19 + 222
33 = 31 + 212

It turns out that the conjecture was false.

What is the smallest odd composite that cannot be written as the sum of a prime and twice a square?

题目大意:

Christian Goldbach 提出每个奇合数都可以写作一个质数与一个平方数的二倍之和:

9 = 7 + 212
15 = 7 + 222
21 = 3 + 232
25 = 7 + 232
27 = 19 + 222
33 = 31 + 212

但是这个推测是错误的。

最小的不能写作一个质数与一个平方数的二倍之和的奇合数是多少?

//(Problem 46)Goldbach's other conjecture
// Completed on Fri, 26 Jul 2013, 16:58
// Language: C11
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<ctype.h>
#include<stdlib.h>
#include<stdbool.h> bool issquare(int n) //判断一个自然数是否为一个平方数
{
if(ceil(sqrt(n))*ceil(sqrt(n))==n) return true;
else return false;
} bool isprim(int n) //素数判断
{
for(int i=; i*i<=n; i++)
{
if(n%i==) return false;
}
return true;
} bool judge(long long n)
{
int i=;
long long t;
while((t=(n-*(i*i)))>)
{
if(isprim(t)) return true;
i++;
}
return false;
} int main()
{
for(long long i=; i<; i=i+)
{
if(!isprim(i) && !judge(i))
{
printf("%lld\n",i);
break;
}
}
return ;
}
Answer:
5777

(Problem 46)Goldbach's other conjecture的更多相关文章

  1. (Problem 73)Counting fractions in a range

    Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...

  2. (Problem 42)Coded triangle numbers

    The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...

  3. (Problem 41)Pandigital prime

    We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...

  4. (Problem 70)Totient permutation

    Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...

  5. (Problem 74)Digit factorial chains

    The number 145 is well known for the property that the sum of the factorial of its digits is equal t ...

  6. (Problem 72)Counting fractions

    Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...

  7. (Problem 53)Combinatoric selections

    There are exactly ten ways of selecting three from five, 12345: 123, 124, 125, 134, 135, 145, 234, 2 ...

  8. (Problem 49)Prime permutations

    The arithmetic sequence, 1487, 4817, 8147, in which each of the terms increases by 3330, is unusual ...

  9. (Problem 47)Distinct primes factors

    The first two consecutive numbers to have two distinct prime factors are: 14 = 2  7 15 = 3  5 The fi ...

随机推荐

  1. Linux用户及用户组管理

    Linux是个优秀的多用户多任务操作系统. 掌握Linux的用户/用户组管理是基本及必备技能之一. 简单做下总结. 无论采用图形界面的用户管理设置,还是终端的管理方式,最终目的都是对系统的用户/用户组 ...

  2. WndProc Msg 消息列表

    WM_NULL = 0x0000; WM_CREATE = 0x0001;应用程序创建一个窗口 WM_DESTROY = 0x0002;一个窗口被销毁 WM_MOVE = 0x0003;移动一个窗口 ...

  3. firebreath注册接口

    对firebreath文档进行翻译,顺便做个笔记,原地址:http://www.firebreath.org/display/documentation/JSAPIAuto 综述: 你可能会对需要转换 ...

  4. 笔记-linux下Qt5.3.2 静态编译

    这里主要讲linux下的编译,windows下面比较简单 参考:http://qt-project.org/wiki/Building-Qt-5-from-Git 依赖 sudo apt-get in ...

  5. MVC定义路由

    标准路由配置 routes.IgnoreRoute("{resource}.axd/{*pathInfo}"); routes.MapRoute( name: "Defa ...

  6. linux杂记(十四)CAJ文档阅读方法

    关于Linux下看CAJ文档的方法 前言:由于大四狗要写各种各样的综述,看各种论文,关于知网为何没有PDF下载,关于为何知网没有CAJ阅读器for linux的种种蛋疼问题,都不要问我. 说回正题,网 ...

  7. JS中的this都有什么作用?

    1.全局代码中的this  是指向全局对象,在浏览器中是window alert(this) //window 2.作为单纯的函数调用: function fooCoder(x) { this.x = ...

  8. 原生js动态改变dom高度

    item参数为要改变高度的dom,maxHight参数为dom的最大高度,speed参数为改变高度的速度function addHeight(item,maxHight,speed){ var ite ...

  9. 循环-21. 求交错序列前N项和

    /* * Main.c * C21-循环-21. 求交错序列前N项和 * Created on: 2014年8月18日 * Author: Boomkeeper ***********测试通过**** ...

  10. IOS 特定于设备的开发:使用加速器启动屏幕上的对象

    借助一点编程工作,iPhone的机载加速计就可以使对象在屏幕上四处“移动”,实时响应用户倾斜手机的方式.下面的代码就是创建一个动画式的蝴蝶,用户可以使之快速移过屏幕. 使之工作的秘密在于:向程序中添加 ...