(Problem 46)Goldbach's other conjecture
It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a prime and twice a square.
9 = 7 + 2
12
15 = 7 + 2
22
21 = 3 + 2
32
25 = 7 + 2
32
27 = 19 + 2
22
33 = 31 + 2
12
It turns out that the conjecture was false.
What is the smallest odd composite that cannot be written as the sum of a prime and twice a square?
题目大意:
Christian Goldbach 提出每个奇合数都可以写作一个质数与一个平方数的二倍之和:
9 = 7 + 2
12
15 = 7 + 2
22
21 = 3 + 2
32
25 = 7 + 2
32
27 = 19 + 2
22
33 = 31 + 2
12
但是这个推测是错误的。
最小的不能写作一个质数与一个平方数的二倍之和的奇合数是多少?
//(Problem 46)Goldbach's other conjecture
// Completed on Fri, 26 Jul 2013, 16:58
// Language: C11
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<ctype.h>
#include<stdlib.h>
#include<stdbool.h> bool issquare(int n) //判断一个自然数是否为一个平方数
{
if(ceil(sqrt(n))*ceil(sqrt(n))==n) return true;
else return false;
} bool isprim(int n) //素数判断
{
for(int i=; i*i<=n; i++)
{
if(n%i==) return false;
}
return true;
} bool judge(long long n)
{
int i=;
long long t;
while((t=(n-*(i*i)))>)
{
if(isprim(t)) return true;
i++;
}
return false;
} int main()
{
for(long long i=; i<; i=i+)
{
if(!isprim(i) && !judge(i))
{
printf("%lld\n",i);
break;
}
}
return ;
}
|
Answer:
|
5777 |
(Problem 46)Goldbach's other conjecture的更多相关文章
- (Problem 73)Counting fractions in a range
Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...
- (Problem 42)Coded triangle numbers
The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...
- (Problem 41)Pandigital prime
We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...
- (Problem 70)Totient permutation
Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...
- (Problem 74)Digit factorial chains
The number 145 is well known for the property that the sum of the factorial of its digits is equal t ...
- (Problem 72)Counting fractions
Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...
- (Problem 53)Combinatoric selections
There are exactly ten ways of selecting three from five, 12345: 123, 124, 125, 134, 135, 145, 234, 2 ...
- (Problem 49)Prime permutations
The arithmetic sequence, 1487, 4817, 8147, in which each of the terms increases by 3330, is unusual ...
- (Problem 47)Distinct primes factors
The first two consecutive numbers to have two distinct prime factors are: 14 = 2 7 15 = 3 5 The fi ...
随机推荐
- Linux用户及用户组管理
Linux是个优秀的多用户多任务操作系统. 掌握Linux的用户/用户组管理是基本及必备技能之一. 简单做下总结. 无论采用图形界面的用户管理设置,还是终端的管理方式,最终目的都是对系统的用户/用户组 ...
- WndProc Msg 消息列表
WM_NULL = 0x0000; WM_CREATE = 0x0001;应用程序创建一个窗口 WM_DESTROY = 0x0002;一个窗口被销毁 WM_MOVE = 0x0003;移动一个窗口 ...
- firebreath注册接口
对firebreath文档进行翻译,顺便做个笔记,原地址:http://www.firebreath.org/display/documentation/JSAPIAuto 综述: 你可能会对需要转换 ...
- 笔记-linux下Qt5.3.2 静态编译
这里主要讲linux下的编译,windows下面比较简单 参考:http://qt-project.org/wiki/Building-Qt-5-from-Git 依赖 sudo apt-get in ...
- MVC定义路由
标准路由配置 routes.IgnoreRoute("{resource}.axd/{*pathInfo}"); routes.MapRoute( name: "Defa ...
- linux杂记(十四)CAJ文档阅读方法
关于Linux下看CAJ文档的方法 前言:由于大四狗要写各种各样的综述,看各种论文,关于知网为何没有PDF下载,关于为何知网没有CAJ阅读器for linux的种种蛋疼问题,都不要问我. 说回正题,网 ...
- JS中的this都有什么作用?
1.全局代码中的this 是指向全局对象,在浏览器中是window alert(this) //window 2.作为单纯的函数调用: function fooCoder(x) { this.x = ...
- 原生js动态改变dom高度
item参数为要改变高度的dom,maxHight参数为dom的最大高度,speed参数为改变高度的速度function addHeight(item,maxHight,speed){ var ite ...
- 循环-21. 求交错序列前N项和
/* * Main.c * C21-循环-21. 求交错序列前N项和 * Created on: 2014年8月18日 * Author: Boomkeeper ***********测试通过**** ...
- IOS 特定于设备的开发:使用加速器启动屏幕上的对象
借助一点编程工作,iPhone的机载加速计就可以使对象在屏幕上四处“移动”,实时响应用户倾斜手机的方式.下面的代码就是创建一个动画式的蝴蝶,用户可以使之快速移过屏幕. 使之工作的秘密在于:向程序中添加 ...