(Problem 46)Goldbach's other conjecture
It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a prime and twice a square.
9 = 7 + 212
15 = 7 + 222
21 = 3 + 232
25 = 7 + 232
27 = 19 + 222
33 = 31 + 212
It turns out that the conjecture was false.
What is the smallest odd composite that cannot be written as the sum of a prime and twice a square?
题目大意:
Christian Goldbach 提出每个奇合数都可以写作一个质数与一个平方数的二倍之和:
9 = 7 + 212
15 = 7 + 222
21 = 3 + 232
25 = 7 + 232
27 = 19 + 222
33 = 31 + 212
但是这个推测是错误的。
最小的不能写作一个质数与一个平方数的二倍之和的奇合数是多少?
//(Problem 46)Goldbach's other conjecture
// Completed on Fri, 26 Jul 2013, 16:58
// Language: C11
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<ctype.h>
#include<stdlib.h>
#include<stdbool.h> bool issquare(int n) //判断一个自然数是否为一个平方数
{
if(ceil(sqrt(n))*ceil(sqrt(n))==n) return true;
else return false;
} bool isprim(int n) //素数判断
{
for(int i=; i*i<=n; i++)
{
if(n%i==) return false;
}
return true;
} bool judge(long long n)
{
int i=;
long long t;
while((t=(n-*(i*i)))>)
{
if(isprim(t)) return true;
i++;
}
return false;
} int main()
{
for(long long i=; i<; i=i+)
{
if(!isprim(i) && !judge(i))
{
printf("%lld\n",i);
break;
}
}
return ;
}
Answer:
|
5777 |
(Problem 46)Goldbach's other conjecture的更多相关文章
- (Problem 73)Counting fractions in a range
Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...
- (Problem 42)Coded triangle numbers
The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...
- (Problem 41)Pandigital prime
We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...
- (Problem 70)Totient permutation
Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...
- (Problem 74)Digit factorial chains
The number 145 is well known for the property that the sum of the factorial of its digits is equal t ...
- (Problem 72)Counting fractions
Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...
- (Problem 53)Combinatoric selections
There are exactly ten ways of selecting three from five, 12345: 123, 124, 125, 134, 135, 145, 234, 2 ...
- (Problem 49)Prime permutations
The arithmetic sequence, 1487, 4817, 8147, in which each of the terms increases by 3330, is unusual ...
- (Problem 47)Distinct primes factors
The first two consecutive numbers to have two distinct prime factors are: 14 = 2 7 15 = 3 5 The fi ...
随机推荐
- 转载 C# 序列化与反序列化意义详解
C# 序列化与反序列化意义详解 总结: ①序列化基本是指把一个对象保存到文件或流中,比如可以把文件序列化以保存到Xml中,或一个磁盘文件中②序列化以某种存储形式使自定义对象持久化: ③将对象从一个地方 ...
- MFC数据类型(data types)
为便于理解MFC库函数中的各种形参,现将MFC中常见的参数类型总结如下: 下面这些是和Win32程序(SDK程序)共同使用的数据类型: 数据类型 意义 BOOL Boolean值(布尔值,不是TRUE ...
- SQL Server索引进阶:第十三级,插入,更新,删除
在第十级到十二级中,我们看了索引的内部结构,以及改变结构造成的影响.在本文中,继续查看Insert,update,delete和merge造成的影响.首先,我们单独看一下这四个命令. 插入INSERT ...
- JavaScript引用类型之Array数组的拼接方法-concat()和截取方法-slice()
1.concat() 基于当前数组中的所有项创建一个新数组(也就是副本),然后将接收到的参数添加到副本的末尾,最后返回新构建的数组.也就是说,concat()在向数组中追加元素时,不会改变原有数组 ...
- JavaScript引用类型之Object类型
在JavaScript中大多数的引用类型都是Object的实例,Object类型也是使用最多的类型! 创建Object类型实例的方式有两种,下面分别来分析一下: (1)第一种是使用new操作符后跟Ob ...
- Unity5UGUI 官方教程学习笔记(四)UI Image
Image Source image:源图片 需要显示的图片 Color:颜色 会与图片进行颜色的混合 Material:材质 Image Type: Simple 精灵只会延伸到适合Rec ...
- MarkDown使用 (三)表格
MarkDown表格的用法 MarkDown表格的用法 例如: $$ \begin{array}{c|lcr} n & \text{Left} & \text{Center} & ...
- 条件注释+JS实现各版本IE浏览器className
最近又开始忙了,项目中又遇到了可恶的IE Hack问题,各种Hack的看着让自己都觉得恶心,于是决定改造一番. 首先请出条件注释语句: 之前用过的条件注释 <!--[if lt IE 7]> ...
- 在CI框架下执行存储的方法
我直接把代码摆在这里分享哈 <?php /** * * Created by JetBrains PhpStorm. * User: lsl * Date: 14-1-8 * Time: 下午2 ...
- hive原生和复合类型的数据载入和使用
原生类型 原生类型包含TINYINT,SMALLINT,INT,BIGINT,BOOLEAN,FLOAT,DOUBLE,STRING,BINARY (Hive 0.8.0以上才可用),TIMESTAM ...