这章让我明白了原来自然数的定义本来就是个递归的过程。

我们通常用枚举的方式引出自然数的定义:0,1,2,3,等等(etc).最后的等等是什么意思?唯一能把等等从描述自然数的枚举方法中去除的方法是自引用,第一种尝试是:

0 is a natural number. 
If n is a natural number, then one more than n is one, too.

虽然这种描述并不是十分严格,但对于scheme格式的数据定义来说,他是一个很好的开始:

natural-number(自然数是以下2者之一

1。0

2.(add1 n) 如果n个自然数

0是第一个自然数

(add1 0)是下一个,接着就明显了:

(add1 (add1 0))

(add1 (add1 (add1 0)))

这些例子让我们想到了表的构造过程,我们从empty出发,通过cons连接更多的元素,构造出表。现在我们从0出发,通过(不断地)使用add1加上1,构造出自然数。

处理自然数的函数必须能够提取构造自然数时所使用的数,就像处理表的函数能够提取cons结构中的元素一样,执行这种提取操作的被称为sub1,它的运算规则是:

(sub1 (add1 n) )= n

它与cdr操作的运算规则类似:

(cdr (cons a-value a-list))= a-list

习题11.2.1:设计一个函数repeat,该函数读入一个自然数n个一个符号,返回包含n个符号的表:

;; repeat : natural-number -> list-of-symbols
(define (repeat n a-symbol)
(cond
[(zero? n) empty]
[else (cons a-symbol (repeat (sub1 n) a-symbol))])) ;; Examples
(repeat 'doll) "should be" empty
(repeat 'rocket) "should be" (cons 'rocket (cons 'rocket empty))

习题11.2.2:

Develop the function tabulate-f, which tabulates the values of

;; f : number  ->  number
(define (f x)
(+ (* 3 (* x x))
(+ (* -6 x)
-1)))

for some natural numbers. Specifically, it consumes a natural number n and produces a list of n posns. The first one combines n with (f n), the second one n-1 with (f n-1), etc.

设计函数,把函数f应用于一些由自然数值组成的表,其中f是上面的函数。

具体地说,函数读取自然数n,返回有n个posn结构体组成表,表的第一个元素是点(n (f n)),第二个为(n-1 (f n-1)),以此类推。

;; a list-of-posns is either:
;; - empty
;; - (cons posn list-of-posns) ;; f : number -> number
(define (f x)
(+ (* (* x x))
(+ (* - x)
-))) ;; tabulate-f : number -> list-of-posns
;; produces a list of posns of length n. Each
;; posn's x coordinate is a number, from 0 to n, and each
;; posn's y coordinate is the result of f on the same posn's
;; x coordinate. #|
;; TEMPLATE
(define (tabulate-f n)
(cond
[(zero? n) ...]
[else (tabulate-f (sub1 n)) ...]))
|# (define (tabulate-f n)
(cond
[(zero? n) empty]
[else (cons (make-posn n (f n))
(tabulate-f (sub1 n)))])) ;; EXAMPLES AS TESTS
(tabulate-f ) "should be" empty
(tabulate-f ) "should be"
(cons (make-posn )
(cons (make-posn )
(cons (make-posn -)
(cons (make-posn -)
empty))))

11.2.4

Lists may contain lists that contain lists and so on. Here is a data definition that takes this idea to an extreme:

deep-list is either

  1. s where s is some symbol or

  2. (cons dl empty), where dl is a deep list.

Develop the function depth, which consumes a deep list and determines how many times cons was used to construct it.

Develop the function make-deep, which consumes a symbol s and a natural number and produces a deep list containing s and constructed with nconses.

表的成员也可以是表,可以嵌套多层,下面就是这种思想的一个极端定义:

deep-list深层表示下列之一:

1.s其中s是symbol

2. (cons dl emtpy) dl是深层表。

设计函数depth,该函数读取一个深层表,测定这个表用了多少次cons来构成。设计函数make-deep,该函数读取符号s和自然数n,

返回包含s,使用n次cons构造的表。

;; depth : deep-list -> natural-number
;; counts the number of cons's used to create this deep list.
;depth:deep-list->number
(define (depth a-dl)
(cond
[(symbol? a-dl) ]
[else (+ (depth (car a-dl))) ]
)) (depth 'bottom) "should be" 0
(depth (cons (cons (cons (cons 'bottom empty) empty) empty) empty)) "should be" 4
(define (make-deep n s)
(cond
[(zero? n) s]
[else (cons (make-deep (sub1 n) s) empty)])) (make-deep 'bottom) "should be" 'bottom
(make-deep 'bottom) "should be"
(cons (cons (cons (cons 'bottom empty) empty) empty) empty)
DRracekt输出:'((((bottom))))
可以看到,很直观的表示4层嵌套。

自然数的另一种数据定义:

自然数(>=20)是系列之一:

1.20

2.(add 1 n)如果n是自然数。

说白了第一种定义时减法,第二种定义时加法。

计算从20(不包括20)到n(包括n)的乘积:

 ;计算n*(n-)...*
(define (product-from- n-above-)
(cond
[(= n-above- ) ]
[else (* n-above- (product-from- (sub1 n-above-)) )]
))
(product-from- ) ;462

《how to design programs》第11章自然数的更多相关文章

  1. 《how to design programs》12章函数复合

    我们写代码时要学会适应辅助函数.作者提出了一个问题,如何对一个表排序.排序函数读取一个表,产生另一个表.排序函数的合约和用途如下: (sort empty) ;; expected value: em ...

  2. 《how to design programs》15章 相互引用的数据定义

    由结构体组成的表与结构体中的表. 在用追溯形式建立家家谱树时,我们通常从某个后代除法,依次处理它的父母,组父母等.而构建树时,我们会不断添加谁是谁的孩子,而不是写出谁是谁的父母,从而建立一颗后代家谱树 ...

  3. 《how to design programs》14章 再论自引用数据

    这是一个家族谱: ;child(define-struct child (father mother name date eyes)) #lang racket ;child (define-stru ...

  4. 《how to design programs》13章用list构造表

    使用cons构造一个包含多个元素的表十分麻烦,因此scheme提供了list操作,该操作接受任意量的值作为输入以创建一个表,下面是扩展的语法: <prm>=list 扩展的scheme值的 ...

  5. 读《编写可维护的JavaScript》第11章总结

    这周也是拿到了同程的offer,从此走上了前端之路!感谢我的贵人们.再次纪念一下~! 第11章 不是你的对象不要动 11.1 什么是你的 你的对象:当你的代码创建了这些对象或者你有职责维护其他人的代码 ...

  6. 第11章 Windows线程池(1)_传统的Windows线程池

    第11章 Windows线程池 11.1 传统的Windows线程池及API (1)线程池中的几种底层线程 ①可变数量的长任务线程:WT_EXECUTELONGFUNCTION ②Timer线程:调用 ...

  7. 《TCP/IP详解卷1:协议》第11章 UDP:用户数据报协议-读书笔记

    章节回顾: <TCP/IP详解卷1:协议>第1章 概述-读书笔记 <TCP/IP详解卷1:协议>第2章 链路层-读书笔记 <TCP/IP详解卷1:协议>第3章 IP ...

  8. java JDK8 学习笔记——第11章 线程和并行API

    第11章 线程与并行API 11.1 线程 11.1.1 线程 在java中,如果想在main()以外独立设计流程,可以撰写类操作java.lang.Runnable接口,流程的进入点是操作在run( ...

  9. 高性能Linux服务器 第11章 构建高可用的LVS负载均衡集群

    高性能Linux服务器 第11章 构建高可用的LVS负载均衡集群 libnet软件包<-依赖-heartbeat(包含ldirectord插件(需要perl-MailTools的rpm包)) l ...

随机推荐

  1. 关于在C#中实现AOP 拦截编程模式的新的探索

    前面有篇文章,是从其他个人博客中贴过来的.地址:http://www.lanhusoft.com/Article/240.html 作者总结实现的挺好. 但是.不能不考虑性能!!使用 ContextB ...

  2. SICP 练习 1.3

    (define (sum a b) (+ a b)) (define (sum-two a b c) ( cond ((and (> (sum a b) (sum a c)) (> (su ...

  3. JQuery 动画之 广告

    html页面: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head&g ...

  4. truncate 、delete与drop三者的异同

    相同点: 1.truncate和不带where子句的delete.以及drop都会删除表内的数据. 2.drop.truncate都是DDL语句(数据定义语言),执行后会自动提交. 不同点: 1. t ...

  5. kafka与Spring的集成

    准备工作 kafka版本:kafka_2.10-0.10.1.0 spring版本:spring4.3 配置文件 pom文件配置(也可以直接下载jar包) Kafka和spring集成的支持类库,sp ...

  6. 黑马程序猿 IO流 ByteArrayInputStream与ByteArrayOutputStream

    ---------------------- ASP.Net+Unity开发..Net培训.期待与您交流! ---------------------- package cn.itcast.IO; i ...

  7. [置顶] Application,Session,Cookie之Application对象

    概述 Application为全局作用域,且只有一个Application对象,它可以存储和访问任意页面的变量(数据存储类型都是Object,也就是任意类型),同时也被多页面使用(也为引用). App ...

  8. 用户向导页面实现左右滑动的ImageSwitcher

    当你第一次打开app时刻,通常有使用向导现在演示APK基本功能和用法,该向导是非常重要的,用户可以知道并调整到速度app如何. 实现此使用向导有非常多种方法,比方用ImageSwitcher.View ...

  9. Docker快速搭建neural style环境

    ## 概览 相关的代码都在Github上,请参见我的Github,https://github.com/lijingpeng/neural-style 敬请多多关注哈~~~ ## Docker镜像构建 ...

  10. 关于document.write()重写页面

    今天碰到了一个以前没注意的问题即:document.write(),在此拿来分享! document.write是最基本的JavaScript命令之一,这个命令简单地打印指定的文本内容到页面上(注意是 ...