dp(x, y)表示第x根柱子上y个盘子移开后到哪根柱子以及花费步数..然后根据汉诺塔原理去转移...

-----------------------------------------------------------------------

#include<cstdio>
#include<cstring>
#include<algorithm>
 
using namespace std;
 
#define X(o) o.pos
#define Y(o) o.w
typedef long long ll;
 
const int maxn = 39;
 
struct node {
int pos; ll w;
} dp[3][maxn];
 
int N, Move[6][2];
 
int main() {
scanf("%d", &N);
for(int i = 0; i < 6; i++) {
char s[4]; scanf("%s", s);
Move[i][0] = s[0] - 'A';
Move[i][1] = s[1] - 'A';
}
for(int i = 0; i < 3; i++)
for(int j = 0; j < 6; j++) if(Move[j][0] == i) {
X(dp[i][1]) = Move[j][1];
Y(dp[i][1]) = 1;
break;
}
for(int y = 2; y <= N; y++)
for(int x = 0; x < 3; x++) {
Y(dp[x][y]) = Y(dp[x][y - 1]) + 1;
if(X(dp[X(dp[x][y - 1])][y - 1]) != x) {
X(dp[x][y]) = 3 - x - X(dp[x][y - 1]);
Y(dp[x][y]) += Y(dp[X(dp[x][y - 1])][y - 1]);
} else {
(Y(dp[x][y]) <<= 1) += Y(dp[X(dp[x][y - 1])][y - 1]);
X(dp[x][y]) = X(dp[x][y - 1]);
}
}
printf("%lld\n", Y(dp[0][N]));
return 0;
}

-----------------------------------------------------------------------

1019: [SHOI2008]汉诺塔

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 1119  Solved: 685
[Submit][Status][Discuss]

Description

汉诺塔由三根柱子(分别用A B C表示)和n个大小互不相同的空心盘子组成。一开始n个盘子都摞在柱子A上,大的在下面,小的在上面,形成了一个塔状的锥形体。

对汉诺塔的一次合法的操作是指:从一根柱子的最上层拿一个盘子放到另一根柱子的最上层,同时要保证被移动的盘子一定放在比它更大的盘子上面(如果移动到空柱子上就不需要满足这个要求)。我们可以用两个字母来描述一次操作:第一个字母代表起始柱子,第二个字母代表目标柱子。例如,AB就是把柱子A最上面的那个盘子移到柱子B。汉诺塔的游戏目标是将所有的盘子从柱子A移动到柱子B或柱子C上面。有一种非常简洁而经典的策略可以帮助我们完成这个游戏。首先,在任何操作执行之前,我们以任意的次序为六种操作(AB、AC、BA、BC、CA和CB)赋予不同的优先级,然后,我们总是选择符合以下两个条件的操作来移动盘子,直到所有的盘子都从柱子A移动到另一根柱子:(1)这种操作是所有合法操作中优先级最高的;(2)这种操作所要移动的盘子不是上一次操作所移动的那个盘子。可以证明,上述策略一定能完成汉诺塔游戏。现在你的任务就是假设给定了每种操作的优先级,计算按照上述策略操作汉诺塔移动所需要的步骤数。

Input

输入有两行。第一行为一个整数n(1≤n≤30),代表盘子的个数。第二行是一串大写的ABC字符,代表六种操作的优先级,靠前的操作具有较高的优先级。每种操作都由一个空格隔开。

Output

只需输出一个数,这个数表示移动的次数。我们保证答案不会超过10的18次方。

Sample Input

3
AB BC CA BA CB AC

Sample Output

7

HINT

Source

BZOJ 1019: [SHOI2008]汉诺塔( dp )的更多相关文章

  1. BZOJ 1019: [SHOI2008]汉诺塔

    Description 一个汉诺塔,给出了移动的优先顺序,问从A移到按照规则移到另一个柱子上的最少步数. 规则:小的在大的上面,每次不能移动上一次移动的,选择可行的优先级最高的. Sol DP. 倒着 ...

  2. BZOJ 1019 :[SHOI2008]汉诺塔(递推)

    好吧蒟蒻还是看题解的 其实看到汉诺塔就该想到是递推了 设f[i][j]表示i个在j杆转移到另一个杆的次数 g[i][j]表示i个在j杆转移到那个杆上 可得 f[i][j]=f[i-1][j]+1+f[ ...

  3. 【BZOJ 1019】 1019: [SHOI2008]汉诺塔 (DP?)

    1019: [SHOI2008]汉诺塔 Description 汉诺塔由三根柱子(分别用A B C表示)和n个大小互不相同的空心盘子组成.一开始n个盘子都摞在柱子A上,大的在下面,小的在上面,形成了一 ...

  4. 1019: [SHOI2008]汉诺塔

    1019: [SHOI2008]汉诺塔 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1495  Solved: 916[Submit][Status] ...

  5. 【BZOJ】1019: [SHOI2008]汉诺塔

    http://www.lydsy.com/JudgeOnline/problem.php?id=1019 题意:汉诺塔规则,只不过盘子n<=30,终点在B柱或C柱,每一次移动要遵守规则:1.小的 ...

  6. bzoj千题计划109:bzoj1019: [SHOI2008]汉诺塔

    http://www.lydsy.com/JudgeOnline/problem.php?id=1019 题目中问步骤数,没说最少 可以大胆猜测移动方案唯一 (真的是唯一但不会证) 设f[i][j] ...

  7. bzoj1019 [SHOI2008]汉诺塔

    1019: [SHOI2008]汉诺塔 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1030  Solved: 638[Submit][Status] ...

  8. 【bzoj1019】[SHOI2008]汉诺塔

    1019: [SHOI2008]汉诺塔 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1427  Solved: 872[Submit][Status] ...

  9. bzoj1019: [SHOI2008]汉诺塔(动态规划)

    1019: [SHOI2008]汉诺塔 题目:传送门 简要题意: 和经典的汉诺塔问题区别不大,但是题目规定了一个移动时的优先级: 如果当前要从A柱子移动,但是A到C的优先级比A到B的优先级大的话,那就 ...

随机推荐

  1. oracle plsql 64位 32位连接未打开 无法解析各种错终极解决方案

    首先取消登陆,进入pl/sql界面-工具-首选项 其次就需要你设置环境变量(加一个ORACLE_HOME和修改原先path里的路径这个不修改也行,主要是让大家知道为什么设置环境变量) 这些设置好,你在 ...

  2. 原理图产生网络表后导进PADS之后,网络乱了的问题

    问题描述:在Orcad中生成的网络表(格式.ASC),导进PADS9.2中(PADS9.2中已有一些元器件),结果报Mixing nets,如下图示. 仔细检查原理图中的这些nets,发现有的有错,有 ...

  3. 动态子类化CComboBox以得到子控件EDIT及LISTBOX

    动态子类化CComboBox以得到子控件EDIT及LISTBOX Joise.LI写于2004-4-6 ComboBox是比较常用的一个控件,有三种样式:CBS_SIMPLE(简单),CBS_DROP ...

  4. localstroge与cookie的区别

    HTML5本地存储是一种让网页可以把键值对存储在用户浏览器客户端的方法.像Cookie一样,这些数据不会因为你打开新网站,刷新页面,乃至关闭你的浏览器而消失. 而与Cookie不同的时,这些数据不会每 ...

  5. httpunit使用演示样例

    import java.io.IOException; import java.net.MalformedURLException; import org.xml.sax.SAXException; ...

  6. linux内核之网络协议栈

    https://www.ibm.com/developerworks/cn/linux/l-ntflt/

  7. Unity cg vertex and fragment shaders(一)

    cg片段 Cg程序片段写CGPROGRAM和ENDCG之间 开始时的片段可以作为#pragma语句编译指令 Pass { // ... the usual pass state setup ... C ...

  8. JavaWEB HTTP请求中POST与GET的区别

    From 的get 和post方法.在数据传输过程中分别对应了HTTP协议中的GET和POST方法. 二者主要区别: GET从服务其获取数据;POST上传数据. GET将表单中的数据按照variabl ...

  9. c++ primer plus 习题答案(3)

    p296.3 #include<iostream> #include<cstdlib> #include<string> #include<cstring&g ...

  10. POJ 2752 Seek the Name, Seek the Fame(求所有既是前缀又是后缀的子串长度)

    题目链接:http://poj.org/problem?id=2752 题意:给你一个字符串,求出所有前缀后缀(既是前缀又是后缀的子串)的长度 思路:首先整个字符串肯定既是前缀又是后缀,为最大的前缀后 ...