bzoj1003[ZJOI2006]物流运输trans
1003: [ZJOI2006]物流运输trans
Description
物流公司要把一批货物从码头A运到码头B。由于货物量比较大,需要n天才能运完。货物运输过程中一般要转停好几个码头。物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格的管理和跟踪。由于各种因素的存在,有的时候某个码头会无法装卸货物。这时候就必须修改运输路线,让货物能够按时到达目的地。但是修改路线是一件十分麻烦的事情,会带来额外的成本。因此物流公司希望能够订一个n天的运输计划,使得总成本尽可能地小。
Input
第一行是四个整数n(1<=n<=100)、m(1<=m<=20)、K和e。n表示货物运输所需天数,m表示码头总数,K表示每次修改运输路线所需成本。接下来e行每行是一条航线描述,包括了三个整数,依次表示航线连接的两个码头编号以及航线长度(>0)。其中码头A编号为1,码头B编号为m。单位长度的运输费用为1。航线是双向的。再接下来一行是一个整数d,后面的d行每行是三个整数P(
1 < P < m)、a、b(1 < = a < = b < = n)。表示编号为P的码头从第a天到第b天无法装卸货物(含头尾)。同一个码头有可能在多个时间段内不可用。但任何时间都存在至少一条从码头A到码头B的运输路线。
Output
包括了一个整数表示最小的总成本。总成本=n天运输路线长度之和+K*改变运输路线的次数。
Sample Input
1 2 1
1 3 3
1 4 2
2 3 2
2 4 4
3 4 1
3 5 2
4 5 2
4
2 2 3
3 1 1
3 3 3
4 4 5
Sample Output
32
HINT
前三天走1-4-5,后两天走1-3-5,这样总成本为(2+2)*3+(3+2)*2+10=32
考虑在不同的时间图联通的状态不同,而且数据规模不大,可以用SPFA预处理出一段时间内限定同一条路径路径从起点到终点的最少花费,然后dp。
f[i]表示1到t时间的最少花费,f[i]=min(cost[1][i],f[j]+k+cost[j+1][i]),1<=j<i,cost[i][j]表示从i到j只用一条路径的最少花费。
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
using namespace std;
int n,m,k,edge,d,cnt=1;
int head[1000];
bool mark[101][1000];
int sum[101][101];
long long f[1000];
struct node{
int to,next,v;
}e[1000];
void ins(int u,int v,int w)
{
e[++cnt].to=v;
e[cnt].v=w;
e[cnt].next=head[u];
head[u]=cnt;
}
void insert(int u,int v,int w)
{
ins(u,v,w);
ins(v,u,w);
}
int spfa(int a,int b)
{
int queue[10000];
bool flag[1000];
bool block[1000];
int dist[1000];
memset(queue,0,sizeof(queue));
memset(flag,0,sizeof(flag));
memset(dist,0,sizeof(dist));
memset(block,0,sizeof(block));
for (int i=1;i<=m;i++)
for (int j=a;j<=b;j++)
if (mark[i][j]) block[i]=1;
flag[1]=1;
queue[0]=1;
int t=0,w=1;
while (t<w)
{
int now=queue[t++];
for(int i=head[now];i;i=e[i].next)
{
if (!block[e[i].to])
if (dist[e[i].to]==0||dist[now]+e[i].v<dist[e[i].to])
{
dist[e[i].to]=dist[now]+e[i].v;
if (!flag[e[i].to])
{
queue[w++]=e[i].to;
flag[e[i].to]=1;
}
}
}
flag[now]=0;
}
return dist[m];
}
void work()
{
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
sum[i][j]=spfa(i,j);
for(int i=1;i<=n;i++)
{
f[i]=(long long)sum[1][i]*i;
if (f[i]==0) f[i]=2147483647;
for(int j=0;j<i;j++)
if (sum[j+1][i])
f[i]=min(f[i],f[j]+k+sum[j+1][i]*(i-j));
}
cout<<f[n];
}
int main()
{
scanf("%d%d%d%d",&n,&m,&k,&edge);
for (int i=1;i<=edge;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
insert(x,y,z);
}
scanf("%d",&d);
for (int i=1;i<=d;i++)
{
int p,a,b;
scanf("%d%d%d",&p,&a,&b);
for (int j=a;j<=b;j++)mark[p][j]=1;
}
work();
}
bzoj1003[ZJOI2006]物流运输trans的更多相关文章
- BZOJ1003: [ZJOI2006] 物流运输 trans
物流运输--看了神犇的题解,就是dp+最短路,设f[i]为1~i天的最少花费,那么 dp[i]=min(cost[1,i],min{dp[j]+cost[j+1,i]+K,1≤j<i}) 就是从 ...
- [BZOJ1003] [ZJOI2006] 物流运输trans (最短路 & dp)
Description 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格 ...
- 【动态规划】【spfa】【最短路】bzoj1003 [ZJOI2006]物流运输trans
预处理cost[a][b] 表示第a天到第b天用同一条线路的成本. 具体转移看代码. #include<cstdio> #include<algorithm> #include ...
- BZOJP1003 [ZJOI2006]物流运输trans
BZOJP1003 [ZJOI2006]物流运输trans 1003: [ZJOI2006]物流运输trans Time Limit: 10 Sec Memory Limit: 162 MB Sub ...
- BZOJ 1003 [ZJOI2006]物流运输trans
1003: [ZJOI2006]物流运输trans Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4242 Solved: 1765[Submit] ...
- BZOJ 1003: [ZJOI2006]物流运输trans(最短路+dp)
1A,爽! cost[i][j]表示从第i天到第j天不改路线所需的最小花费,这个可以用最短路预处理出.然后dp(i)=cost[j][i]+dp(j-1)+c. c为该路线的花费. --------- ...
- bzoj1003 [ZJOI2006]物流运输
1003: [ZJOI2006]物流运输 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 6300 Solved: 2597[Submit][Stat ...
- bzoj1003: [ZJOI2006]物流运输(DP+spfa)
1003: [ZJOI2006]物流运输 题目:传送门 题解: 可以用spfa处理出第i天到第j都走这条路的花费,记录为cost f[i]表示前i天的最小花费:f[i]=min(f[i],f[j-1] ...
- 【BZOJ1003】1003: [ZJOI2006]物流运输trans SPFA+DP
Description 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格 ...
随机推荐
- 深入理解linux网络技术内幕读书笔记(三)--用户空间与内核的接口
Table of Contents 1 概论 1.1 procfs (/proc 文件系统) 1.1.1 编程接口 1.2 sysctl (/proc/sys目录) 1.2.1 编程接口 1.3 sy ...
- pojo的序列化和反序列化
实例代码: package com.lky.pojo; import java.io.ByteArrayInputStream; import java.io.ByteArrayOutputStrea ...
- 《Programming Massively Parallel Processors》Chapter5 习题解答
自己做的部分习题解答,因为时间关系,有些马虎,也不全面,欢迎探讨或指出错误 5.1 Consider the matrixaddition in Exercise 3.1. Can one use s ...
- DLNA介绍(包含UPnP,2011/6/20 更新)
这部分的内容大多来源于网络及官方文档,依照自己的翻译理解整理所成.东西比較多,从头慢慢看还是能够懂个大概的. 文件夹: 一.DNLA的建立 二.DLNA的成员 三.DLNA标准的制定 四.DLNA的设 ...
- Rational AppScan 扫描大型网站
Rational AppScan 工作原理 Rational AppScan(简称 AppScan)其实是一个产品家族,包括众多的应用安全扫描产品,从开发阶段的源代码扫描的 AppScan sourc ...
- (转)根据IP返回对应的位置信息
其实就是使用了百度的IP库的功能接口,然后处理下就行了,效果图如下: 准备工作: 1.注册成为开度开发者,创建应用获得百度API调用的AK秘钥,百度开发中心地址:http://developer.ba ...
- (转)C#中的委托,匿名方法和Lambda表达式
简介 在.NET中,委托,匿名方法和Lambda表达式很容易发生混淆.我想下面的代码能证实这点.下面哪一个First会被编译?哪一个会返回我们需要的结果?即Customer.ID=5.答案是6个Fir ...
- SignalR小计
微软官方例子地址:http://www.asp.net/signalr/overview/getting-started/tutorial-getting-started-with-signalr-a ...
- zeromq源码分析笔记之架构(1)
1.zmq概述 ZeroMQ是一种基于消息队列的多线程网络库,其对套接字类型.连接处理.帧.甚至路由的底层细节进行抽象,提供跨越多种传输协议的套接字.引用云风的话来说:ZeroMQ 并不是一个对 so ...
- C++编译指令#pragma pack的配对使用
#pragma pack可以用来指定C++数据结构的成员变量的内存对齐数值(可选值为1,2,4,8,16). 本文主要是强调在你的头文件中使用pack指令要配对使用,以避免意外影响项目中其他源文件的结 ...