矩阵快速幂3 k*n铺方格
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <queue>
#include <cstdio>
#include <algorithm>
#include <map>
#include <time.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define LL long long using namespace std;
using namespace __gnu_pbds; const int MOD = ; struct Martix
{
LL martix[][];
int row,col;
Martix(int _row,int _col)
{
memset(martix,,sizeof(martix));
row = _row;
col = _col;
}
void sets(int _row,int _col)
{
memset(martix,,sizeof(martix));
row = _row;
col = _col;
}
Martix operator *(const Martix &A)const
{
Martix C(row, A.col);
for(int i = ; i < row; i++)
for(int j = ; j < A.col; j++)
for(int k = ; k < col; k++)
{
C.martix[i][j] = (C.martix[i][j] + martix[i][k] * A.martix[k][j]);
if(C.martix[i][j] >= MOD)
C.martix[i][j]%=MOD;
} return C;
}
}; //
//第i行不放置:new_x = x << 1, new_y = (y << 1) + 1; 列数+1
//第i行竖放骨牌:new_x = (x << 1) + 1, new_y = y << 1; 列数+1
//第i行横向骨牌:new x = (x << 2) + 3, new_y = (y << 2) + 3; 列数+2 int k;
Martix A(,),F(,);
void dfs(int x,int y,int col)
{
if(col == k) {A.martix[y][x] = ; return ;}
dfs(x<<, (y<<) + , col+);
dfs( (x<<) + , y << , col + );
if(col + <= k)
dfs( (x << )+ , (y << )+, col+);
} void solve()
{
int n;
scanf("%d %d",&k,&n);
if( (k&) && (n&) )
{
printf("%d\n",);
return ;
}
A.sets(<<k,<<k);
F.sets(<<k,<<k);
dfs(,,);
for(int i = ; i < (<<k); i++)
F.martix[i][i] = ;
while(n > )
{
if(n & )
F = F*A;
A = A*A;
n >>= ;
}
printf("%lld\n",F.martix[ (<<k)- ][ (<<k)- ]);
} int main(void)
{
solve();
return ;
}
矩阵快速幂3 k*n铺方格的更多相关文章
- 矩阵快速幂2 3*n铺方格
#include <iostream> #include <cstdlib> #include <cstring> #include <queue> # ...
- hdu 6198(矩阵快速幂)
number number number Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- NOI ONLINE 入门组 魔法 矩阵快速幂
做了这道题我才发现NOI入门组!=NOIP普及组 题目链接 https://www.luogu.com.cn/problem/P6190 题意 给出一张有向图,你有K次机会可以反转一条边的边权,即让它 ...
- poj 3613 经过k条边最短路 floyd+矩阵快速幂
http://poj.org/problem?id=3613 s->t上经过k条边的最短路 先把1000范围的点离散化到200中,然后使用最短路可以使用floyd,由于求的是经过k条路的最短路, ...
- 瓷砖铺放 (状压DP+矩阵快速幂)
由于方块最多涉及3行,于是考虑将每两行状压起来,dfs搜索每种状态之间的转移. 这样一共有2^12种状态,显然进行矩阵快速幂优化时会超时,便考虑减少状态. 进行两遍bfs,分别为初始状态可以到达的状态 ...
- hdu 2157 从a点走到b点刚好k步的方案数是多少 (矩阵快速幂)
n个点 m条路 询问T次 从a点走到b点刚好k步的方案数是多少 给定一个有向图,问从A点恰好走k步(允许重复经过边)到达B点的方案数mod p的值把 给定的图转为邻接矩阵,即A(i,j)=1当且仅当存 ...
- hdu 1575 求一个矩阵的k次幂 再求迹 (矩阵快速幂模板题)
Problem DescriptionA为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973. Input数据的第一行是一个T,表示有T组数据.每组数据的第一行有 ...
- poj3613Cow Relays——k边最短路(矩阵快速幂)
题目:http://poj.org/problem?id=3613 题意就是求从起点到终点的一条恰好经过k条边的最短路: floyd+矩阵快速幂,矩阵中的第i行第j列表示从i到j的最短路,矩阵本身代表 ...
- 51nod 1122 机器人走方格 V4 【矩阵快速幂】
首先建立矩阵,给每个格子编号,然后在4*4的格子中把能一步走到的格子置为1,然后乘n次即可,这里要用到矩阵快速幂 #include<iostream> #include<cstdio ...
随机推荐
- 概率dp——hdu4089推公式+循环迭代
迭代是化简公式的常用技巧 dp[i][j]表示队伍中有i人,tomato排在第j位出现情况2的概率,那么先推出公式再进行简化 dp[i][1]=p21*dp[i][i] + p41 j<=k : ...
- Delphi 最小化窗体到托盘
---- 现在很多的应用程序都有这样一种功能,当用户选择最小化窗口时,窗口不是象平常那样最小化到任务栏上,而是“最小化”成一个任务栏图标.象FoxMail 3.0 NetVampire 3.0等都提供 ...
- redis:info详解
[root@192.168.56.159 redis6380]redis-cli -a xxx info# Serverredis_version:3.0.7 redis_version: Redi ...
- 第三周课堂笔记4thand5th
循环打印 #计算字典中的键值对的个数 print(len(a)) #获取字典中键的列表 print(a.keys()) #获取字典中值的列表 print(a.values()) #获取字典中键值对的个 ...
- 如何解决:修改.gitignore后,不生效
1.git rm -r --cached . 删除缓存 2.git add . 添加要提交的文件 3.git commit -m "update .gitignore" 提交 ...
- mybatis-spring多数据源配置
mybatis-spring多数据源配置 1.注意事项:在MapperScannerConfigurer里配置的时候,每个数据源的mapper接口应放到不同的包中,下面的例子中用粗体标明,另外,对于m ...
- springcloud Eureka Finchley.RELEASE 版本
创建一个父项目cloud-demo pom.xml <?xml version="1.0" encoding="UTF-8"?> <proje ...
- CSS选择器及优先级
转自CSS优先级的计算公式:http://wyz.67ge.com/css-selector-priority/ 通常我们可以将CSS的优先级由高到低分为六组: 无条件优先的属性只需要在属性后面使用 ...
- Node中的模块系统
加载require var 自定义变量名称 = require('模块') 两个作用: 执行被加载模块的代码 得到被加载模块中的exports导出接口对象 导出exports node中是模块作用域, ...
- 解决无法wifi上网的问题
1.查看网卡型号 lspci | grep Network 可以看到我的是Wireless-AC 9560 2.登录Inter官网下载网卡驱动 https://www.intel.com/conten ...