http://www.csmining.org/cdmc2016/

Data Mining Tasks Description

Task 1: 2016 e-News categorisation

For this year, the dataset is sourced from 6 online news media:

The New Zealand Herald (www.nzherald.co.nz), Reuters(www.reuters.com), The Times (www.timesonline.co.uk) , Yahoo News (news.yahoo.com), BBC (www.bbc.co.uk) and The Press (www.stuff.co.nz).

Business, entertainment, sport, technology, and travel are the selected five news categories. Each document of the dataset is labelled manually by skimming over the text and determining the category. In the provided data files, each news piece is formatted as one line pure text with the last character as the class label (for training data), and we removed all punctuations and symbols during the data formation.

Note that; the dataset text is encrypted for fair play purpose, and this task is not aiming for decryption practices. So any uses of such technique are prohibited and should be avoided in your methods used for competition. Any participants alleged with this misconduct will be declared void results.

The statistical information of the training dataset is summarised as below:

Topic No. of News
Business 361
Entertainment 343
Sport 363
Technology 356
Travel 362

Task 2: UniteCloud Operation Log for Anomaly Detection

UniteCloud is a resilient private Cloud infrastructure created in New Zealand Unitec Institute of Technology using OpenNebula for cloud orchestration and KVM for virtualization.

This dataset is the operational data that captured from real-time running UniteCloud server with a sample period of 1-minute interval. There are 243 features for each sample, which correspond to operational measurements of 243 sensors from the UniteCloud servers. The file is labelled accordingly by anomalous events and anomaly category determination over the collected log data. In the supplied training dataset, we provide 57,654 samples, with 243 sensor operation values for each sample, and the non-zero labels in the last column indicate the seven anomalous events.

The goal of this task is to identify various abnormal events accurately from ranges of sensor log files without high computational costs.

The statistical information of this dataset is summarized as:

No. of Sample No. of Features No. of Classes

No. of Training

No. of Testing

82,363 243 8 57,654 24,709

Task 3: Android Malware Classification

This dataset is created from a set of APK (application package) files collected from the Opera Mobile Store over the period of January to September of 2014. Just like Windows (PC) systems use an .exe file for installing software,Android use APK files for installing software on the Android operating system.

The permission system is applied as a measure to restrict access to privileged system resources and is considered as the first barrier to malware. Application developers have to explicitly declare the permissions in the AndroidManifest.xml file contained in the APK. All official Android permissions are categorized into four types: Normal, Dangerous, Signature and SignatureOrSystem. As dangerous permissions have access to restricted resources and can have a negative impact if used incorrectly, they require user’s approval at installation.

To be taken as the input of a machine-learning algorithm, permissions are commonly coded as binary variables i.e., an element in the vector could only take on two values: 1 for a requested permission and 0 otherwise. The number of all possible Android permissions varies based on the version of the OS. In this task, for each APK file under consideration, we provide a list of permissions declared in its AndoridManifest.xml file. The class label of the APK file -- +1 if it is regarded as malicious and -1 otherwise -- is determined by the detection results of security appliances hosted by VirusTotal. Note that adware was not counted as malware in our setting. The participants of CDMC 2016 competition are invited to design a classifier that could best match this result.

The statistical information of the dataset is summarized as:

No. of APK files No. of Permissions No. of Classes No. of Training No. of Testing
61,730 up to 583 2 30,920 30,810

Also, the MD5 hash is provided if you may need for checksum:
CDMC2016_AndroidPermissions.Train, md5(473f64d9e650e82325b1ce0216cc50c9)
CDMC2016_AndroidLabels.Train, md5(784b2ce7da61ff2935dca770c4bcbfb3)
CDMC2016_AndroidPermissions.Test, md5(192c70a8489c41fa95f5b95732fcdfb1)

cdmc2016数据挖掘竞赛题目Android Malware Classification的更多相关文章

  1. CIKM Competition数据挖掘竞赛夺冠算法陈运文

    CIKM Competition数据挖掘竞赛夺冠算法陈运文 背景 CIKM Cup(或者称为CIKM Competition)是ACM CIKM举办的国际数据挖掘竞赛的名称.CIKM全称是Intern ...

  2. Deep Android Malware Detection小结

    题目:Deep Android Malware Detection 作者:Niall McLaughlin, Jesus Martinez del Rincon, BooJoong Kang 年份:2 ...

  3. Kaggle "Microsoft Malware Classification Challenge"——就是沙箱恶意文件识别,有 Opcode n-gram特征 ASM文件图像纹理特征 还有基于图聚类方法

    使用图聚类方法:Malware Classification using Graph Clustering 见 https://github.com/rahulp0491/Malware-Classi ...

  4. 数据挖掘竞赛kaggle初战——泰坦尼克号生还预测

    1.题目 这道题目的地址在https://www.kaggle.com/c/titanic,题目要求大致是给出一部分泰坦尼克号乘船人员的信息与最后生还情况,利用这些数据,使用机器学习的算法,来分析预测 ...

  5. kaggle数据挖掘竞赛初步--Titanic<派生属性&维归约>

    完整代码: https://github.com/cindycindyhi/kaggle-Titanic 特征工程系列: Titanic系列之原始数据分析和数据处理 Titanic系列之数据变换 Ti ...

  6. Android Malware Analysis

    A friend of mine asked me help him to examine his Android 5.0 smartphone. He did not say what's wron ...

  7. kaggle数据挖掘竞赛初步--Titanic<随机森林&特征重要性>

    完整代码: https://github.com/cindycindyhi/kaggle-Titanic 特征工程系列: Titanic系列之原始数据分析和数据处理 Titanic系列之数据变换 Ti ...

  8. kaggle数据挖掘竞赛初步--Titanic<数据变换>

    完整代码: https://github.com/cindycindyhi/kaggle-Titanic 特征工程系列: Titanic系列之原始数据分析和数据处理 Titanic系列之数据变换 Ti ...

  9. kaggle数据挖掘竞赛初步--Titanic<原始数据分析&缺失值处理>

    Titanic是kaggle上的一道just for fun的题,没有奖金,但是数据整洁,拿来练手最好不过啦. 这道题给的数据是泰坦尼克号上的乘客的信息,预测乘客是否幸存.这是个二元分类的机器学习问题 ...

随机推荐

  1. go 文件操作 io

    package main import ( "fmt" "os" ) func main() { //打开文件 //概念说明: file 的叫法 //1. fi ...

  2. 阿里云ecs环境配置

    在阿里云 CentOS 服务器(ECS)上搭建 nginx + mysql + php-fpm 环境 https://ninghao.net/blog/1368 阿里云ecs从购买到环境搭建和建站!! ...

  3. mysql更改密码

    mysql command line client输入密码以后闪退问题的解决: 网上搜到的解决办法(my.ini文件之类的修改对我都没有起到作用).. 所以觉得是自己密码的问题,因为许久不用这个软件了 ...

  4. 并发模式与 RPS 模式之争,性能压测领域的星球大战

    本文是<如何做好性能压测>系列专题分享的第四期,该专题将从性能压测的设计.实现.执行.监控.问题定位和分析.应用场景等多个纬度对性能压测的全过程进行拆解,以帮助大家构建完整的性能压测的理论 ...

  5. Directx11教程(63) tessellation学习(5)

    原文:Directx11教程(63) tessellation学习(5)        TS中生成细分后顶点的u,v,{w}坐标,我们根据控制点和u,w,{w}坐标生成新的顶点位置,在前面四边形的细分 ...

  6. 简单的requestAnimationFrame动画

    html部分 <div id="test" style="width:1px;height:17px;background:#0f0;">0%< ...

  7. [ 转]Linux进程关系

    作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! Linux的进程相互之间有一定的关系.比如说,在Linux进程基础中,我们看到,每 ...

  8. easyUI + servlet 展示datagrid数据列表

    1:在jsp页面添加所用easyUI的js和css 2.前台代码示例: <table id="dgObj" style="width: 100%;height:90 ...

  9. ACK容器服务发布virtual node addon,快速部署虚拟节点提升集群弹性能力

    在上一篇博文中(https://yq.aliyun.com/articles/647119),我们展示了如何手动执行yaml文件给Kubernetes集群添加虚拟节点,然而,手动执行的方式用户体验并不 ...

  10. jQuery 五角星评分

    五角星打分 我用的是搜狗输入法上带的特殊符号打出来的  空五角星:☆  实五角星:★ 1.html <ul class="comment"> <li>☆&l ...