codeforces 1269E K Integers (二分+树状数组)
链接:https://codeforces.com/contest/1269/problem/E
题意:给一个序列P1,P2,P3,P4....Pi,每次可以交换两个相邻的元素,执行最小次数的交换移动,使得最后存在一个子段1,2,…,k,这是题目所定义的f(k),题目要求求出所有的f(n),并依次输出。
思路:首先考虑逆序对问题,比如3 2 1 4这个序列,要使其变为1 2 3 4,最小的移动次数是这个序列中逆序对之和,2+1 = 3,逆序对是(3,2) (3,1)(2,1),但是在比如序列3 5 2 1 6 7 4 8 9,求f(4)怎么做?首先是不是把1 2 3 4这个序列聚成在一起,相连在一起,再去计算逆序对个数,两个过程所花费相加就是答案。那么这个题目就分为两个过程,1.聚合n个数字在一起。2.求逆序对的个数,两者花费相加就行。第1个过程如果使得聚合步数最少呢?其实就是求出聚合后的最中间的位置,其他所有的数字向这个位置靠近所花费的移动次数是最少的,这个过程可以用二分做。第2个过程可以用树状数组,也可以用线段树做。输入的时候记录每个数字的位置,建两个树状数组,一个树状数组维护数字出现的次数,用来求逆序对个数,另一个树状数组维护各个数字在原序列的位置。
AC代码:
#include<iostream>
#include<string>
#include<vector>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;
ll mod = 1e9+;
const int maxn = 2e5+;
ll t[maxn],cnt[maxn];
ll pos[maxn];
int n;
inline int lowbit(ll x){
return x&(-x);
///算出x二进制的从右往左出现第一个1以及这个1之后的那些0组成数的二进制对应的十进制的数
}
void add(ll *b , int x, int k) {//单点修改
while (x <= n) { //不能越界
b[x] = b[x] + k;
x = x + lowbit(x);
}
}
ll getsum(ll *b,int x) { // a[1]……a[x]的和
ll ans = ;
while (x > ) {
ans = ans + b[x];
x = x - lowbit(x);
}
return ans;
}
int main(){
ios::sync_with_stdio(false);
cin.tie();
cin>>n;
for(int i = ;i<=n;i++){
int t;
cin>>t;
pos[t] = i;
}
ll inv = ;
for(int i = ;i<=n;i++){
inv += (i--getsum(t,pos[i]));
add(t,pos[i],);
add(cnt,pos[i],pos[i]);
if(i==){
cout<<<<" ";
continue;
}
int mid,l = ,r = n;
while(l<=r){
mid = (l+r)>>;
if(getsum(t,mid)*<=i){
l = mid+;
}
else{
r = mid-;
}
}
ll ans = ;
ll cntL = getsum(t,mid);
ll cntR = i - cntL;
ll indexL = getsum(cnt,mid);
ll indexR = getsum(cnt,n)-indexL;
ans+=((mid+mid-cntL+)*cntL)/-indexL;
ans+=(indexR-((mid++(mid+cntR))*cntR)/);
cout<<ans+inv<<" ";
}
return ;
}
codeforces 1269E K Integers (二分+树状数组)的更多相关文章
- 【BZOJ3110】【整体二分+树状数组区间修改/线段树】K大数查询
Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c 如果是2 a b c形式,表示询问从第a个位置到第b个位 ...
- BZOJ_3110_[Zjoi2013]K大数查询_整体二分+树状数组
BZOJ_3110_[Zjoi2013]K大数查询_整体二分+树状数组 Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位 ...
- BZOJ.3110.[ZJOI2013]K大数查询(整体二分 树状数组/线段树)
题目链接 BZOJ 洛谷 整体二分求的是第K小(利用树状数组).求第K大可以转为求第\(n-K+1\)小,但是这样好像得求一个\(n\). 注意到所有数的绝对值\(\leq N\),将所有数的大小关系 ...
- 【bzoj3110】[Zjoi2013]K大数查询 整体二分+树状数组区间修改
题目描述 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c.如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数 ...
- 【BZOJ-2527】Meteors 整体二分 + 树状数组
2527: [Poi2011]Meteors Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 831 Solved: 306[Submit][Stat ...
- zoj-3963 Heap Partition(贪心+二分+树状数组)
题目链接: Heap Partition Time Limit: 2 Seconds Memory Limit: 65536 KB Special Judge A sequence ...
- 【bzoj4009】[HNOI2015]接水果 DFS序+树上倍增+整体二分+树状数组
题目描述 给出一棵n个点的树,给定m条路径,每条路径有一个权值.q次询问求一个路径包含的所有给定路径中权值第k小的. 输入 第一行三个数 n和P 和Q,表示树的大小和盘子的个数和水果的个数. 接下来n ...
- 【bzoj2527】[Poi2011]Meteors 整体二分+树状数组
题目描述 有N个成员国.现在它发现了一颗新的星球,这颗星球的轨道被分为M份(第M份和第1份相邻),第i份上有第Ai个国家的太空站. 这个星球经常会下陨石雨.BIU已经预测了接下来K场陨石雨的情况.BI ...
- bzoj千题计划316:bzoj3173: [Tjoi2013]最长上升子序列(二分+树状数组)
https://www.lydsy.com/JudgeOnline/problem.php?id=3173 插入的数是以递增的顺序插入的 这说明如果倒过来考虑,那么从最后一个插入的开始删除,不会对以某 ...
随机推荐
- 优先队列-UVA10603
#include<cstdio> #include<cstring> #include<queue> using namespace std; typedef st ...
- 论文阅读笔记(八)【IEEEAccess2019】:High-Resolution and Low-Resolution Video Person Re-Identification: A Benchmark
Introduction (1)Motivation: 监控视频中的行人,有的比较清晰,有的因为距离较远非常模糊. 在高低分辨率方面的行人重识别缺乏数据集和研究. (2)Contribution: ① ...
- 爬取漫画DB上的JoJo的奇妙冒险 第七部 飙马野郎
SBR是JOJO系列我最喜欢的一部,所以今天把漫画爬取到本地,日后慢慢看. import re import time import requests from requests import cod ...
- 粒子群算法优化BP生物能神经网络
定义: 粒子群中每个粒子的位置表示BP神经网络当前迭代中权值的集合,每个粒子的维数由网络中起连接作用的权值的数量和阈值个数决定,以给定训练样本集的神经网络输出误差作为神经网络训练问题的适应度函数,适应 ...
- CPPU OJ | 开发日志
2019.12.18 ~ 2019.12.22 用腾讯云的学生服务器测试搭建OJ(踩了无数的坑) 2019.12.25 ~ 2019.12.28 在模管中心办理申请虚拟服务器的手续 2019.12.3 ...
- pytest-测试用例teardown和setup
setup和teardown对于处理一些前置条件很有帮助 用例运行级别 模块级(setup_moudle/teardown_moudle)开始于模块始末,全局的 所有用例开始前/结束后执行一次(整个. ...
- Piggy-Bank HDU - 1114 完全背包
#include<iostream> #include<cstring> using namespace std; const int INF=0x3f3f3f3f; ]; s ...
- 事件&vue修饰符
JavaScript 事件 HTML事件是发生在HTML元素上的事情.当在HTML页面帐使用JavaScript时,javascript可以触发这些事件 HTML 事件 HTML事件可以是浏览器的行为 ...
- Struts2学习-jsp中超链接传参问题
今天在学习过程中对struts2中超链接的传参问题产生了一些疑惑,不明白jsp中的超链接如何将参数传到Action方法中去的. <s:iterator value="categorys ...
- VScode usage
Common settings editor.minimap.enabled //close the preview workbench.editor.show tabs // show f ...