(转)Hadoop Combiner
转自:http://blog.csdn.net/jokes000/article/details/7072963
众所周知,Hadoop框架使用Mapper将数据处理成一个<key,value>键值对,再网络节点间对其进行整理(shuffle),然后使用Reducer处理数据并进行最终输出。
在上述过程中,我们看到至少两个性能瓶颈:
- 如果我们有10亿个数据,Mapper会生成10亿个键值对在网络间进行传输,但如果我们只是对数据求最大值,那么很明显的Mapper只需要输出它所知道的最大值即可。这样做不仅可以减轻网络压力,同样也可以大幅度提高程序效率。
- 使用专利中的国家一项来阐述数据倾斜这 个定义。这样的数据远远不是一致性的或者说平衡分布的,由于大多数专利的国家都属于美国,这样不仅Mapper中的键值对、中间阶段(shuffle)的 键值对等,大多数的键值对最终会聚集于一个单一的Reducer之上,压倒这个Reducer,从而大大降低程序的性能。
Hadoop通过使用一个介于Mapper和Reducer之间的Combiner步骤来解决上述瓶颈。你可以将Combiner视为Reducer的一个帮手,它主要是为了削减Mapper的输出从而减少网
络带宽和Reducer之上的负载。如果我们定义一个Combiner,MapReducer框架会对中间数据多次地使用它进行处理。
如果Reducer只运行简单的分布式方法,例如最大值、最小值、或者计数,那么我们可以让Reducer自己作为Combiner。但许多有用的方法不是分布式的。以下我们使用求平均值作为例子进行讲解:
Mapper输出它所处理的键值对,为了使单个DataNode计算平均值Reducer会对它收到的<key,value>键值对进行排序,求和。
由于Reducer将它所收到的<key,value>键值的数目视为输入数据中的<key,value>键值对的数目,此时使用Combiner的主要障碍就是计数操作。我们可以重写MapReduce程序来明确的跟踪计数过程。
代码如下:
- package com;
- import java.io.IOException;
- import org.apache.hadoop.conf.Configuration;
- import org.apache.hadoop.conf.Configured;
- import org.apache.hadoop.fs.Path;
- import org.apache.hadoop.io.DoubleWritable;
- import org.apache.hadoop.io.LongWritable;
- import org.apache.hadoop.io.Text;
- import org.apache.hadoop.mapreduce.Job;
- import org.apache.hadoop.mapreduce.Mapper;
- import org.apache.hadoop.mapreduce.Reducer;
- import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
- import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
- import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
- import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
- import org.apache.hadoop.util.Tool;
- import org.apache.hadoop.util.ToolRunner;
- public class AveragingWithCombiner extends Configured implements Tool {
- public static class MapClass extends Mapper<LongWritable,Text,Text,Text> {
- static enum ClaimsCounters { MISSING, QUOTED };
- // Map Method
- public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
- String fields[] = value.toString().split(",", -20);
- String country = fields[4];
- String numClaims = fields[8];
- if (numClaims.length() > 0 && !numClaims.startsWith("\"")) {
- context.write(new Text(country), new Text(numClaims + ",1"));
- }
- }
- }
- public static class Reduce extends Reducer<Text,Text,Text,DoubleWritable> {
- // Reduce Method
- public void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
- double sum = 0;
- int count = 0;
- for (Text value : values) {
- String fields[] = value.toString().split(",");
- sum += Double.parseDouble(fields[0]);
- count += Integer.parseInt(fields[1]);
- }
- context.write(key, new DoubleWritable(sum/count));
- }
- }
- public static class Combine extends Reducer<Text,Text,Text,Text> {
- // Reduce Method
- public void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
- double sum = 0;
- int count = 0;
- for (Text value : values) {
- String fields[] = value.toString().split(",");
- sum += Double.parseDouble(fields[0]);
- count += Integer.parseInt(fields[1]);
- }
- context.write(key, new Text(sum+","+count));
- }
- }
- // run Method
- public int run(String[] args) throws Exception {
- // Create and Run the Job
- Job job = new Job();
- job.setJarByClass(AveragingWithCombiner.class);
- FileInputFormat.addInputPath(job, new Path(args[0]));
- FileOutputFormat.setOutputPath(job, new Path(args[1]));
- job.setJobName("AveragingWithCombiner");
- job.setMapperClass(MapClass.class);
- job.setCombinerClass(Combine.class);
- job.setReducerClass(Reduce.class);
- job.setInputFormatClass(TextInputFormat.class);
- job.setOutputFormatClass(TextOutputFormat.class);
- job.setOutputKeyClass(Text.class);
- job.setOutputValueClass(Text.class);
- System.exit(job.waitForCompletion(true) ? 0 : 1);
- return 0;
- }
- public static void main(String[] args) throws Exception {
- int res = ToolRunner.run(new Configuration(), new AveragingWithCombiner(), args);
- System.exit(res);
- }
- }
(转)Hadoop Combiner的更多相关文章
- Hadoop学习笔记—8.Combiner与自定义Combiner
一.Combiner的出现背景 1.1 回顾Map阶段五大步骤 在第四篇博文<初识MapReduce>中,我们认识了MapReduce的八大步凑,其中在Map阶段总共五个步骤,如下图所示: ...
- Hadoop中Combiner的使用
注:转载自http://blog.csdn.net/ipolaris/article/details/8723782 在MapReduce中,当map生成的数据过大时,带宽就成了瓶颈,怎样精简压缩传给 ...
- Hadoop(十六)之使用Combiner优化MapReduce
前言 前面的一篇给大家写了一些MapReduce的一些程序,像去重.词频统计.统计分数.共现次数等.这一篇给大家介绍的是关于Combiner优化操作. 一.Combiner概述 1.1.为什么需要Co ...
- Hadoop基础-MapReduce的Combiner用法案例
Hadoop基础-MapReduce的Combiner用法案例 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.编写年度最高气温统计 如上图说所示:有一个temp的文件,里面存放 ...
- hadoop学习;Streaming,aggregate;combiner
hadoop streaming同意我们使用不论什么可运行脚本来处理按行组织的数据流,数据取自UNIX的标准输入STDIN,并输出到STDOUT 我们能够用 linux命令管道查看文本有多少行,cat ...
- 【Hadoop】Combiner的本质是迷你的reducer,不能随意使用
问题提出: 众所周知,Hadoop框架使用Mapper将数据处理成一个<key,value>键值对,再网络节点间对其进行整理(shuffle),然后使用Reducer处理数据并进行最终输出 ...
- Hadoop的Combiner
在很多MapReduce应用的场景中,假设能在向reducer分发mapper结果之前做一下"本地化Reduce".一wordcount为样例,假设作业处理中的文件单词中" ...
- hadoop map任务Combiner被调用的源码逻辑简要分析
从MapTask类中分析下去,看一下map任务是如何被调用并执行的. 入口方法是MapTask的run方法,看一下run方法的相关介绍: org.apache.hadoop.mapred. ...
- Hadoop 使用Combiner提高Map/Reduce程序效率
众所周知,Hadoop框架使用Mapper将数据处理成一个<key,value>键值对,再网络节点间对其进行整理(shuffle),然后使用Reducer处理数据并进行最终输出. 在上述过 ...
随机推荐
- 在IE8的基础上安装IE11
安装包下载 链接:https://pan.baidu.com/s/1WAuyMg_SrfVa0wLjoop5Jw 提取码:nh1r 安装方式 先运行 - EIE11_ZH-CN_WOL_WIN76 ...
- JavaSE学习笔记(4)---抽象类和接口
JavaSE学习笔记(4)---抽象类和接口 抽象方法和抽象类 ·抽象方法 使用abstract修饰的方法,没有方法体,只有声明.定义的是一种"规范",就是告诉子类必须要给抽象方法 ...
- 移动Web开发-WebApp(flex布局+移动端导航案例)
实际开发中的像素:css像素设备像素比dpr=设备像素/css像素标清屏dpr=1 高清屏dpr=2缩放改变的是css像素大小PPI(每英寸的物理像素点)=根号(屏幕横向分辨率²+屏幕纵向分辨率²)/ ...
- 基于TCP协议Socket通信
服务器线程处理类 package demo4; import java.io.*; import java.net.Socket; /** * 服务器线程处理类 * @ClassName Server ...
- wfuzz的使用
用于模糊测试,测试过滤字符 转载:https://www.secpulse.com/archives/81560.html https://www.freebuf.com/sectool/173746 ...
- P1041 传染病控制【暴搜】
P1041 传染病控制 提交 10.78k 通过 3.74k 时间限制 1.00s 内存限制 125.00MB 题目提供者CCF_NOI 难度提高+/省选- 历史分数100 提交记录 查看题解 标签 ...
- Centos7 同时运行PHP5.2和PHP7.1配置
工作环境一直都是lnmp,其中PHP已经升级到7.1版本了.突然有份代码需要运行在PHP5.2上.但是之前的环境还是需要的,所以需要在centos中再安装PHP5.2. 0.之前的php7安装在/us ...
- JVM的小理解
1.开发人员编写Java代码(.java文件),然后将之编译成字节码(.class文件),再然后字节码被装入内存,一旦字节码进入虚拟机,它就会被解释器解释执行,或者是被即时代码发生器有选择的转换成机器 ...
- 0级搭建类008-Ubuntu Server Linux安装 (18.04.2) 公开
项目文档引子系列是根据项目原型,制作的测试实验文档,目的是为了提升项目过程中的实际动手能力,打造精品文档AskScuti. 项目文档引子系列目前不对外发布,仅作为博客记录.如学员在实际工作过程中需提前 ...
- 实现Windows数据更新
一.枚举 枚举是一组描述性的名称 定义一组有限的值,不能包含方法 对可能的值进行约束 .定义枚举类 public enum Gender { Male,Female } .使用枚举表示整数值 publ ...