转自:http://blog.csdn.net/jokes000/article/details/7072963

众所周知,Hadoop框架使用Mapper将数据处理成一个<key,value>键值对,再网络节点间对其进行整理(shuffle),然后使用Reducer处理数据并进行最终输出。

在上述过程中,我们看到至少两个性能瓶颈:

  1. 如果我们有10亿个数据,Mapper会生成10亿个键值对在网络间进行传输,但如果我们只是对数据求最大值,那么很明显的Mapper只需要输出它所知道的最大值即可。这样做不仅可以减轻网络压力,同样也可以大幅度提高程序效率。
  2. 使用专利中的国家一项来阐述数据倾斜这 个定义。这样的数据远远不是一致性的或者说平衡分布的,由于大多数专利的国家都属于美国,这样不仅Mapper中的键值对、中间阶段(shuffle)的 键值对等,大多数的键值对最终会聚集于一个单一的Reducer之上,压倒这个Reducer,从而大大降低程序的性能。

Hadoop通过使用一个介于Mapper和Reducer之间的Combiner步骤来解决上述瓶颈。你可以将Combiner视为Reducer的一个帮手,它主要是为了削减Mapper的输出从而减少网

络带宽和Reducer之上的负载。如果我们定义一个Combiner,MapReducer框架会对中间数据多次地使用它进行处理。

如果Reducer只运行简单的分布式方法,例如最大值、最小值、或者计数,那么我们可以让Reducer自己作为Combiner。但许多有用的方法不是分布式的。以下我们使用求平均值作为例子进行讲解:

Mapper输出它所处理的键值对,为了使单个DataNode计算平均值Reducer会对它收到的<key,value>键值对进行排序,求和。

由于Reducer将它所收到的<key,value>键值的数目视为输入数据中的<key,value>键值对的数目,此时使用Combiner的主要障碍就是计数操作。我们可以重写MapReduce程序来明确的跟踪计数过程。

代码如下:

  1. package com;
  2. import java.io.IOException;
  3. import org.apache.hadoop.conf.Configuration;
  4. import org.apache.hadoop.conf.Configured;
  5. import org.apache.hadoop.fs.Path;
  6. import org.apache.hadoop.io.DoubleWritable;
  7. import org.apache.hadoop.io.LongWritable;
  8. import org.apache.hadoop.io.Text;
  9. import org.apache.hadoop.mapreduce.Job;
  10. import org.apache.hadoop.mapreduce.Mapper;
  11. import org.apache.hadoop.mapreduce.Reducer;
  12. import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
  13. import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
  14. import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
  15. import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
  16. import org.apache.hadoop.util.Tool;
  17. import org.apache.hadoop.util.ToolRunner;
  18. public class AveragingWithCombiner extends Configured implements Tool {
  19. public static class MapClass extends Mapper<LongWritable,Text,Text,Text> {
  20. static enum ClaimsCounters { MISSING, QUOTED };
  21. // Map Method
  22. public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
  23. String fields[] = value.toString().split(",", -20);
  24. String country = fields[4];
  25. String numClaims = fields[8];
  26. if (numClaims.length() > 0 && !numClaims.startsWith("\"")) {
  27. context.write(new Text(country), new Text(numClaims + ",1"));
  28. }
  29. }
  30. }
  31. public static class Reduce extends Reducer<Text,Text,Text,DoubleWritable> {
  32. // Reduce Method
  33. public void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
  34. double sum = 0;
  35. int count = 0;
  36. for (Text value : values) {
  37. String fields[] = value.toString().split(",");
  38. sum += Double.parseDouble(fields[0]);
  39. count += Integer.parseInt(fields[1]);
  40. }
  41. context.write(key, new DoubleWritable(sum/count));
  42. }
  43. }
  44. public static class Combine extends Reducer<Text,Text,Text,Text> {
  45. // Reduce Method
  46. public void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
  47. double sum = 0;
  48. int count = 0;
  49. for (Text value : values) {
  50. String fields[] = value.toString().split(",");
  51. sum += Double.parseDouble(fields[0]);
  52. count += Integer.parseInt(fields[1]);
  53. }
  54. context.write(key, new Text(sum+","+count));
  55. }
  56. }
  57. // run Method
  58. public int run(String[] args) throws Exception {
  59. // Create and Run the Job
  60. Job job = new Job();
  61. job.setJarByClass(AveragingWithCombiner.class);
  62. FileInputFormat.addInputPath(job, new Path(args[0]));
  63. FileOutputFormat.setOutputPath(job, new Path(args[1]));
  64. job.setJobName("AveragingWithCombiner");
  65. job.setMapperClass(MapClass.class);
  66. job.setCombinerClass(Combine.class);
  67. job.setReducerClass(Reduce.class);
  68. job.setInputFormatClass(TextInputFormat.class);
  69. job.setOutputFormatClass(TextOutputFormat.class);
  70. job.setOutputKeyClass(Text.class);
  71. job.setOutputValueClass(Text.class);
  72. System.exit(job.waitForCompletion(true) ? 0 : 1);
  73. return 0;
  74. }
  75. public static void main(String[] args) throws Exception {
  76. int res = ToolRunner.run(new Configuration(), new AveragingWithCombiner(), args);
  77. System.exit(res);
  78. }
  79. }

(转)Hadoop Combiner的更多相关文章

  1. Hadoop学习笔记—8.Combiner与自定义Combiner

    一.Combiner的出现背景 1.1 回顾Map阶段五大步骤 在第四篇博文<初识MapReduce>中,我们认识了MapReduce的八大步凑,其中在Map阶段总共五个步骤,如下图所示: ...

  2. Hadoop中Combiner的使用

    注:转载自http://blog.csdn.net/ipolaris/article/details/8723782 在MapReduce中,当map生成的数据过大时,带宽就成了瓶颈,怎样精简压缩传给 ...

  3. Hadoop(十六)之使用Combiner优化MapReduce

    前言 前面的一篇给大家写了一些MapReduce的一些程序,像去重.词频统计.统计分数.共现次数等.这一篇给大家介绍的是关于Combiner优化操作. 一.Combiner概述 1.1.为什么需要Co ...

  4. Hadoop基础-MapReduce的Combiner用法案例

    Hadoop基础-MapReduce的Combiner用法案例 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.编写年度最高气温统计 如上图说所示:有一个temp的文件,里面存放 ...

  5. hadoop学习;Streaming,aggregate;combiner

    hadoop streaming同意我们使用不论什么可运行脚本来处理按行组织的数据流,数据取自UNIX的标准输入STDIN,并输出到STDOUT 我们能够用 linux命令管道查看文本有多少行,cat ...

  6. 【Hadoop】Combiner的本质是迷你的reducer,不能随意使用

    问题提出: 众所周知,Hadoop框架使用Mapper将数据处理成一个<key,value>键值对,再网络节点间对其进行整理(shuffle),然后使用Reducer处理数据并进行最终输出 ...

  7. Hadoop的Combiner

    在很多MapReduce应用的场景中,假设能在向reducer分发mapper结果之前做一下"本地化Reduce".一wordcount为样例,假设作业处理中的文件单词中" ...

  8. hadoop map任务Combiner被调用的源码逻辑简要分析

      从MapTask类中分析下去,看一下map任务是如何被调用并执行的.   入口方法是MapTask的run方法,看一下run方法的相关介绍:   org.apache.hadoop.mapred. ...

  9. Hadoop 使用Combiner提高Map/Reduce程序效率

    众所周知,Hadoop框架使用Mapper将数据处理成一个<key,value>键值对,再网络节点间对其进行整理(shuffle),然后使用Reducer处理数据并进行最终输出. 在上述过 ...

随机推荐

  1. Linux配置安装

    1.  安装jdk 1.1   卸载:使用java version查看虚拟机是否有jdk环境,存在先卸载: 1.      首先我的系统是CenOS7,安装完成后,先打开终端,切换到管理员账号,命令如 ...

  2. 纪中17日T1 2321. 方程

    纪中17日T1 2321. 方程 (File IO): input:cti.in output:cti.out 时间限制: 1000 ms  空间限制: 262144 KB  具体限制   Goto ...

  3. C++析构、拷贝、赋值、移动拷贝函数的几个知识点(不全)

    怕忘了,写这:析构函数不会释放指针成员指向的对象. 众所周知,C++的类如果没有默认构造函数,会自动生成一个. 同理,如果没有复制构造函数即A::A(const A&){}这个函数 ,则系统也 ...

  4. 获取现有Table中某些字段

    //dtH System.Data.DataTable dttemp = new System.Data.DataTable(); DataView tempDv = dtH.DefaultView; ...

  5. 【easyui】treegrid逐级加载源码

    当初看这源码的目的是: 1.treegrid是怎么实现逐级加载树结构的. 解: 见demo,主要就是点击节点的时候会请求后台. 2.treegrid加载后,第二次展开节点会不会再次请求后台. 解:第二 ...

  6. js限制按钮每隔一段时间才能再次点击

    设置属性 disabled 可以限制交互,单击按钮时添加disabled=“disabled”属性,再为按钮添加定时器,一定时间后删除定时器和disabled属性 <!DOCTYPE html& ...

  7. 剑指offer-面试题16-数值的整数次方-数字

    /* 题目: 实现函数double Power(double base,int exponent), 求base的exponent次方. */ /* 思路: 本题需要考虑的情况较多: 1.0的负数次方 ...

  8. Java链表常见操作【剑指Offer】03:从尾到头打印链表

    题目描述 输入一个链表,按链表从尾到头的顺序返回一个ArrayList. 题解一:递归 /* 在最后一次递归方法返回以后,每一层的递归方法都会做一个arrayList.add(listNode.val ...

  9. sqli-labs less-13 --> less-14

    Less-13(报错盲注) 1.判断是否存在注入点 输入admin’时,出现如下报错信息,经过分析,存在注入点,且注入方式为:(‘’) 执行uname=admin')#&passwd=& ...

  10. C语言实现反转链表 II(指定2个节点反转)

    要求: 反转从位置 m 到 n 的链表.请使用一趟扫描完成反转. 说明:1 ≤ m ≤ n ≤ 链表长度. 示例: 输入: 1->2->3->4->5->NULL, m ...