查看Spark与Hadoop等其他组件的兼容版本
安装与Spark相关的其他组件的时候,例如JDK,Hadoop,Yarn,Hive,Kafka等,要考虑到这些组件和Spark的版本兼容关系。这个对应关系可以在Spark源代码的pom.xml文件中查看。
一、 下载Spark源代码
打开网址https://github.com/apache/spark,例如选择v2.4.0-rc5版本,再点击“Clone or download”按钮,点击下方的“Download ZIP”进行下载。
二、查看pom.xml文件
将下载的源代码压缩包解压后,打开里面的pom.xml文件,查看properties标签内各配置项,里面有列出其他组件的兼容版本信息,例如<hadoop.version>2.6.5</hadoop.version>表示hadoop版本为2.6.5。如下:
<properties>
<project.build.sourceEncoding>UTF-</project.build.sourceEncoding>
<project.reporting.outputEncoding>UTF-</project.reporting.outputEncoding>
<java.version>1.8</java.version>
<maven.compiler.source>${java.version}</maven.compiler.source>
<maven.compiler.target>${java.version}</maven.compiler.target>
<maven.version>3.5.</maven.version>
<sbt.project.name>spark</sbt.project.name>
<slf4j.version>1.7.</slf4j.version>
<log4j.version>1.2.</log4j.version>
<hadoop.version>2.6.</hadoop.version>
<protobuf.version>2.5.</protobuf.version>
<yarn.version>${hadoop.version}</yarn.version>
<flume.version>1.6.</flume.version>
<zookeeper.version>3.4.</zookeeper.version>
<curator.version>2.6.</curator.version>
<hive.group>org.spark-project.hive</hive.group>
<!-- Version used in Maven Hive dependency -->
<hive.version>1.2..spark2</hive.version>
<!-- Version used for internal directory structure -->
<hive.version.short>1.2.</hive.version.short>
<derby.version>10.12.1.1</derby.version>
<parquet.version>1.10.</parquet.version>
<orc.version>1.5.</orc.version>
<orc.classifier>nohive</orc.classifier>
<hive.parquet.version>1.6.</hive.parquet.version>
<jetty.version>9.3..v20180605</jetty.version>
<javaxservlet.version>3.1.</javaxservlet.version>
<chill.version>0.9.</chill.version>
<ivy.version>2.4.</ivy.version>
<oro.version>2.0.</oro.version>
<codahale.metrics.version>3.1.</codahale.metrics.version>
<avro.version>1.8.</avro.version>
<avro.mapred.classifier>hadoop2</avro.mapred.classifier>
<aws.kinesis.client.version>1.8.</aws.kinesis.client.version>
<!-- Should be consistent with Kinesis client dependency -->
<aws.java.sdk.version>1.11.</aws.java.sdk.version>
<!-- the producer is used in tests -->
<aws.kinesis.producer.version>0.12.</aws.kinesis.producer.version>
<!-- org.apache.httpcomponents/httpclient-->
<commons.httpclient.version>4.5.</commons.httpclient.version>
<commons.httpcore.version>4.4.</commons.httpcore.version>
<!-- commons-httpclient/commons-httpclient-->
<httpclient.classic.version>3.1</httpclient.classic.version>
<commons.math3.version>3.4.</commons.math3.version>
<!-- managed up from 3.2. for SPARK- -->
<commons.collections.version>3.2.</commons.collections.version>
<scala.version>2.11.</scala.version>
<scala.binary.version>2.11</scala.binary.version>
<codehaus.jackson.version>1.9.</codehaus.jackson.version>
<fasterxml.jackson.version>2.6.</fasterxml.jackson.version>
<fasterxml.jackson.databind.version>2.6.7.1</fasterxml.jackson.databind.version>
<snappy.version>1.1.7.1</snappy.version>
<netlib.java.version>1.1.</netlib.java.version>
<calcite.version>1.2.-incubating</calcite.version>
<commons-codec.version>1.10</commons-codec.version>
<commons-io.version>2.4</commons-io.version>
<!-- org.apache.commons/commons-lang/-->
<commons-lang2.version>2.6</commons-lang2.version>
<!-- org.apache.commons/commons-lang3/-->
<commons-lang3.version>3.5</commons-lang3.version>
<datanucleus-core.version>3.2.</datanucleus-core.version>
<janino.version>3.0.</janino.version>
<jersey.version>2.22.</jersey.version>
<joda.version>2.9.</joda.version>
<jodd.version>3.5.</jodd.version>
<jsr305.version>1.3.</jsr305.version>
<libthrift.version>0.9.</libthrift.version>
<antlr4.version>4.7</antlr4.version>
<jpam.version>1.1</jpam.version>
<selenium.version>2.52.</selenium.version>
<!--
Managed up from older version from Avro; sync with jackson-module-paranamer dependency version
-->
<paranamer.version>2.8</paranamer.version>
<maven-antrun.version>1.8</maven-antrun.version>
<commons-crypto.version>1.0.</commons-crypto.version>
<!--
If you are changing Arrow version specification, please check ./python/pyspark/sql/utils.py,
./python/run-tests.py and ./python/setup.py too.
-->
<arrow.version>0.10.</arrow.version> <test.java.home>${java.home}</test.java.home>
<test.exclude.tags></test.exclude.tags>
<test.include.tags></test.include.tags> <!-- Package to use when relocating shaded classes. -->
<spark.shade.packageName>org.spark_project</spark.shade.packageName> <!-- Modules that copy jars to the build directory should do so under this location. -->
<jars.target.dir>${project.build.directory}/scala-${scala.binary.version}/jars</jars.target.dir> <!-- Allow modules to enable / disable certain build plugins easily. -->
<build.testJarPhase>prepare-package</build.testJarPhase>
<build.copyDependenciesPhase>none</build.copyDependenciesPhase> <!--
Dependency scopes that can be overridden by enabling certain profiles. These profiles are
declared in the projects that build assemblies. For other projects the scope should remain as "compile", otherwise they are not available
during compilation if the dependency is transivite (e.g. "graphx/" depending on "core/" and
needing Hadoop classes in the classpath to compile).
-->
<flume.deps.scope>compile</flume.deps.scope>
<hadoop.deps.scope>compile</hadoop.deps.scope>
<hive.deps.scope>compile</hive.deps.scope>
<orc.deps.scope>compile</orc.deps.scope>
<parquet.deps.scope>compile</parquet.deps.scope>
<parquet.test.deps.scope>test</parquet.test.deps.scope> <!--
Overridable test home. So that you can call individual pom files directly without
things breaking.
-->
<spark.test.home>${session.executionRootDirectory}</spark.test.home> <CodeCacheSize>512m</CodeCacheSize>
</properties>
完毕。
查看Spark与Hadoop等其他组件的兼容版本的更多相关文章
- 对于spark以及hadoop的几个疑问(转)
Hadoop是啥?spark是啥? spark能完全取代Hadoop吗? Hadoop和Spark属于哪种计算计算模型(实时计算.离线计算)? 学习Hadoop和spark,哪门语言好? 哪里能找到比 ...
- Spark学习之基础相关组件(1)
Spark学习之基础相关组件(1) 1. Spark是一个用来实现快速而通用的集群计算的平台. 2. Spark的一个主要特点是能够在内存中进行计算,因而更快. 3. RDD(resilient di ...
- 【Hadoop】ZooKeeper组件
目录 一.配置时间同步 二.部署zookeeper(master节点) 1.使用xftp上传软件包至~ 2.解压安装包 3.创建 data 和 logs 文件夹 4.写入该节点的标识编号 5.修改配置 ...
- Spark和hadoop的关系
1. Spark VSHadoop有哪些异同点? Hadoop:分布式批处理计算,强调批处理,常用于数据挖掘和数据分析. Spark:是一个基于内存计算的开源的集群计算系统,目的是让数据分析更加快速, ...
- Spark和Hadoop作业之间的区别
Spark目前被越来越多的企业使用,和Hadoop一样,Spark也是以作业的形式向集群提交任务,那么在内部实现Spark和Hadoop作业模型都一样吗?答案是不对的. 熟悉Hadoop的人应该都知道 ...
- Spark与Hadoop计算模型的比较分析
http://tech.it168.com/a2012/0401/1333/000001333287.shtml 最近很多人都在讨论Spark这个貌似通用的分布式计算模型,国内很多机器学习相关工作者都 ...
- 完全卸载hadoop安装的组件(hdp版本)
yum remove -y hadoop_* zookeeper* ranger* hbase_* ranger* hbase_* ambari-* hadoop_* zookeeper_* hbas ...
- 大数据 --> Spark和Hadoop作业之间的区别
Spark和Hadoop作业之间的区别 熟悉Hadoop的人应该都知道,用户先编写好一个程序,我们称为Mapreduce程序,一个Mapreduce程序就是一个Job,而一个Job里面可以有一个或多个 ...
- 大数据 --> Spark与Hadoop对比
Spark与Hadoop对比 什么是Spark Spark是UC Berkeley AMP lab所开源的类Hadoop MapReduce的通用的并行计算框架,Spark基于map reduce算法 ...
随机推荐
- 记录KVM虚拟机常用操作管理命令
环境说明 centos7中的KVM NAT方式是kvm安装后的默认方式.它支持主机与虚拟机的互访,同时也支持虚拟机访问互联网,但不支持外界访问虚拟机. 检查当前的网络设置 # virsh net-li ...
- Arm开发板+Qt学习之路-析构函数和对话框一起时
先记录一下代码 一:先将指针释放掉,在显示对话框 void MainWindow::canResponseError(SendCanMsgThread *sendCanMsgThread ){ std ...
- tomcat+memcached+nginx部署文档(附完整部署包直接运行即可)
1 前言 1.1 目的 为了正确的部署“ngix+memcached”特编写此部署手册,使安装人员可以通过部署手册知道如何部署系统,也为需要安装该系统的安装人员正确.快速的部署本系统提供帮助. 1.2 ...
- ASPNetCore 发布到IIS
ASPNetCore 发布到IIS 准备工作 1.1. 安装IIS.(具体操作不再说明) 安装成功后再浏览器输入localhost得到的页面如下 1.2. 安装dotnet-hosting-2.2 ...
- golang单元测试简述
Golang中内置了对单元测试的支持,不需要像Java一样引入第三方Jar才能进行测试,下面将分别介绍Golang所支持的几种测试: 一.测试类型 Golang中单元测试有功能测试.基准测试. ...
- Dijkstra算法 1
// Dijkstra算法,适用于没有负边的情况 // 注意:是没有负边,不是没有负环 // 在这一条件下,可以将算法进行优化 // 从O(v*E)的复杂度,到O(V^2)或者是O(E*log(V)) ...
- 阿里云服务器Web Deploy配置和使用Visual Studio进行Web项目发布部署遇到的坑
阿里云的服务器一直闲着,烧着银子,当初花几千大洋开通,本想弄信息化的项目为所帮扶的贫困户脱贫助手,不想势单力薄,一直没有找到好的项目.最近大家都在众志成城抗击新肺疫情,于是又想能不能尽点自己的力量,于 ...
- 原创: idea 的maven 方式配置 开发javaWeb(idea+tomcat +maven
通过idea 编辑器来配置基于maven创建站点,在tomcat上配置 在采用idea 配置之前,首先要确保maven和 tomcat 正确运行. maven 配置链接 tomcat 配置链接 实际你 ...
- 持续更新phpstorm h和pycharm 激活码
1.hosts文件写入 0.0.0.0 account.jetbrains.com0.0.0.0 www.jetbrains.com 2.激活码: AHD9079DKZ-eyJsaWNlbnNlSWQ ...
- 搭建wordpress博客
环境说明 操作系统: CentOS 7.2 64位 1. 准备LAMP环境 LNMP 是 Linux.Nginx.MySQL 和 PHP 的缩写,是 WordPress 博客系统依赖的基础运行环境.我 ...