ZOJ1310-Robot (BFS)
The Robot Moving Institute is using a robot in their local store to transport different items. Of course the robot should spend only the minimum time necessary when travelling from one place in the store to another. The robot can move only along a straight line (track). All tracks form a rectangular grid. Neighbouring tracks are one meter apart. The store is a rectangle N x M meters and it is entirely covered by this grid. The distance of the track closest to the side of the store is exactly one meter. The robot has a circular shape with diameter equal to 1.6 meter. The track goes through the center of the robot. The robot always faces north, south, west or east. The tracks are in the south-north and in the west-east directions. The robot can move only in the direction it faces. The direction in which it faces can be changed at each track crossing. Initially the robot stands at a track crossing. The obstacles in the store are formed from pieces occupying 1m x 1m on the ground. Each obstacle is within a 1 x 1 square formed by the tracks. The movement of the robot is controlled by two commands. These commands are GO and TURN.
The GO command has one integer parameter n in {1,2,3}. After receiving this command the robot moves n meters in the direction it faces.
The TURN command has one parameter which is either left or right. After receiving this command the robot changes its orientation by 90o in the direction indicated by the parameter.
The execution of each command lasts one second.
Help researchers of RMI to write a program which will determine the minimal time in which the robot can move from a given starting point to a given destination.
Input
The input consists of blocks of lines. The first line of each block contains two integers M <= 50 and N <= 50 separated by one space. In each of the next M lines there are N numbers one or zero separated by one space. One represents obstacles and zero represents empty squares. (The tracks are between the squares.) The block is terminated by a line containing four positive integers B1 B2 E1 E2 each followed by one space and the word indicating the orientation of the robot at the starting point. B1, B2 are the coordinates of the square in the north-west corner of which the robot is placed (starting point). E1, E2 are the coordinates of square to the north-west corner of which the robot should move (destination point). The orientation of the robot when it has reached the destination point is not prescribed. We use (row, column)-type coordinates, i.e. the coordinates of the upper left (the most north-west) square in the store are 0,0 and the lower right (the most south-east) square are M - 1, N - 1. The orientation is given by the words north or west or south or east. The last block contains only one line with N = 0 and M = 0.
Output
The output contains one line for each block except the last block in the input. The lines are in the order corresponding to the blocks in the input. The line contains minimal number of seconds in which the robot can reach the destination point from the starting point. If there does not exist any path from the starting point to the destination point the line will contain -1.
Sample Input
9 10
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0
7 2 2 7 south
0 0
Sample Output
12
题解:
具有两种操作的广搜,和普通的广搜相比有些不同,普通的广搜一般是一种操作,上下左右,
这一题加上了转向。同时还要注意的是这个机器人本身的大小,这个也就确定了,边界上它是走不了的。
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
#define ll long long
using namespace std;
const int MAX = ;
const int INF = <<;
const int dir[][]{{-,},{,},{,},{,-}};
struct Nod{
int x,y,t,d;
bool operator < (const Nod &a) const{
return t > a.t;
}
};
int g[MAX][MAX], n, m, mark[MAX][MAX][];
int bfs(int bx, int by, int ex, int ey, int f) {
priority_queue<Nod> que;
Nod nod;
mark[bx][by][f] = ;
que.push((Nod){bx,by,,f});
while(!que.empty()) {
nod = que.top();
que.pop();
int x = nod.x, y = nod.y;
if(x == ex && y == ey) return nod.t;
int d = nod.d;
if(mark[x][y][(d+)%] == - || mark[x][y][(d+)%] > nod.t + ){
mark[x][y][(d+)%] = nod.t+;
que.push((Nod){x,y,nod.t+,(d+)%});
}
if(mark[x][y][(d-+)%] == - || mark[x][y][(d-+)%] > nod.t + ){
mark[x][y][(d-+)%] = nod.t + ;
que.push((Nod){x,y,nod.t+,(d-+)%});
}
int nx = x, ny = y;
for(int i = ; i <= ; i ++) {
nx += dir[d][];
ny += dir[d][];
if(nx <= || nx >= m || ny <= || ny >= n)break;
if(g[nx][ny] == || g[nx-][ny] == || g[nx][ny-] == || g[nx-][ny-] == ) break;
if(mark[nx][ny][d] == - || mark[nx][ny][d] > nod.t+){
mark[nx][ny][d] = nod.t+;
que.push((Nod){nx,ny,nod.t+,d});
}
}
}
return -;
}
int main() {
int bx, by, ex, ey, d, ans;
char str[];
while(scanf("%d%d",&m,&n)&&(n+m)) {
for(int i = ; i < m; i ++) {
for(int j = ; j < n; j ++) {
scanf("%d",&g[i][j]);
}
}
scanf("%d %d %d %d %s",&bx,&by,&ex,&ey,str);
if(str[] == 'n') d = ;
else if(str[] == 'e') d = ;
else if(str[] == 's') d = ;
else if(str[] == 'w') d = ;
memset(mark,-,sizeof(mark));
ans = bfs(bx,by,ex,ey,d);
printf("%d\n",ans);
}
return ;
}
ZOJ1310-Robot (BFS)的更多相关文章
- UVa 1600 Patrol Robot (BFS最短路 && 略不一样的vis标记)
题意 : 机器人要从一个m * n 网格的左上角(1,1) 走到右下角(m, n).网格中的一些格子是空地(用0表示),其他格子是障碍(用1表示).机器人每次可以往4个方向走一格,但不能连续地穿越k( ...
- poj 2688 Cleaning Robot bfs+dfs
题目链接 首先bfs, 求出两两之间的距离, 然后dfs就可以. #include <iostream> #include <cstdio> #include <algo ...
- Uva 1600 Patrol Robot (BFS 最短路)
这道题运用的知识点是求最短路的算法.一种方法是利用BFS来求最短路. 需要注意的是,我们要用一个三维数组来表示此状态是否访问过,而不是三维数组.因为相同的坐标可以通过不同的穿墙方式到达. #inclu ...
- Japan 2005 Domestic Cleaning Robot /// BFS 状压 二进制位运算 结构体内构造函数 oj22912
题目大意: 输入w h,接下来输入h行w列的图 ' . ':干净的点: ' * ' :垃圾: ' x ' : 墙: ' o ' : 初始位置: 输出 清理掉所有垃圾的最短路径长度 无则输出-1 ...
- UVa 1600 Patrol Robot(BFS)
题意: 给定一个n*m的图, 有一个机器人需要从左上角(1,1)到右下角(n,m), 网格中一些格子是空地, 一些格子是障碍, 机器人每次能走4个方向, 但不能连续穿越k(0<= k <= ...
- POJ 1573 Robot Motion(BFS)
Robot Motion Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 12856 Accepted: 6240 Des ...
- UVA 1600 Patrol Robot(机器人穿越障碍最短路线BFS)
UVA 1600 Patrol Robot Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu ...
- C. Robot(BFS)
C. Robot Time Limit: 3000ms Case Time Limit: 3000ms Memory Limit: 262144KB 64-bit integer IO format: ...
- UVA12569-Planning mobile robot on Tree (EASY Version)(BFS+状态压缩)
Problem UVA12569-Planning mobile robot on Tree (EASY Version) Accept:138 Submit:686 Time Limit: 300 ...
- UVA1600-Patrol Robot(BFS进阶)
Problem UVA1600-Patrol Robot Accept:529 Submit:4330 Time Limit: 3000 mSec Problem Description A rob ...
随机推荐
- A——大整数加法(HDU1002)
题目: I have a very simple problem for you. Given two integers A and B, your job is to calculate the S ...
- c语言double类型的输入
double输入用 %lf ,而不能用 %f 今天在使用double类型输入时先用了 scanf("%lf", &a),结果以%f输出的时候都是0,以%g,%e输出似乎是最 ...
- C++ 解决列车重排问题
问题节选自<<数据结构.算法与应用(C++语言描述)>>, 思路与代码为原创, 如有疏漏及问题欢迎指正 问题描述: 一辆列车有n节车厢, 车厢排列乱序(如: 284657139 ...
- laravel web server设置远程访问及原理
laravel中可以用命令行php artisan serve 启动web server,并通过localhost:8000访问项目. 但是因为开发环境为虚拟机部署项目,然后通过端口访问,所以开启服务 ...
- Android Studio 学习笔记(四):Adapter和RecyclerView说明
在现版本中,滚动控件有多种,而相比于ListView,GridView,RecyclerView的用途更广,因此将前两者作为Adapter适配器的引入,再对RecyclerView进行简单讲解. MV ...
- 「Flink」事件时间与水印
我们先来以滚动时间窗口为例,来看一下窗口的几个时间参数与Flink流处理系统时间特性的关系. 获取窗口开始时间Flink源代码 获取窗口的开始时间为以下代码: org.apache.flink.str ...
- 5.Python安装依赖(包)模块方法介绍
1.前提条件 1). 确保已经安装需要的Python版本 2). 确保已经将Python的目录加入到环境变量中 2. Python安装包的几种常用方式 1). pip安装方式(正常在线安装) 2). ...
- HDU-1754 I Hate It (树状数组模板题——单点更新,区间查询最大值)
题目链接 ac代码(注意字符读入前需要注意回车的影响) #include<iostream> #include<cstdio> #include<cstring> ...
- HTML速查
HTML 基本文档 <!DOCTYPE html> <html> <head> <title>文档标题</title> </head& ...
- 纪中5日T1 1564. 旅游
1564. 旅游 题目描述 输入N个数,从中选择一些出来计算出总和,问有多少种选法使得和为质数. 输入 第一行一个整数N. 第二行N个整数,表示这N个数的值. 输出 一个整数,表示方案数. 样例输入 ...