The Robot Moving Institute is using a robot in their local store to transport different items. Of course the robot should spend only the minimum time necessary when travelling from one place in the store to another. The robot can move only along a straight line (track). All tracks form a rectangular grid. Neighbouring tracks are one meter apart. The store is a rectangle N x M meters and it is entirely covered by this grid. The distance of the track closest to the side of the store is exactly one meter. The robot has a circular shape with diameter equal to 1.6 meter. The track goes through the center of the robot. The robot always faces north, south, west or east. The tracks are in the south-north and in the west-east directions. The robot can move only in the direction it faces. The direction in which it faces can be changed at each track crossing. Initially the robot stands at a track crossing. The obstacles in the store are formed from pieces occupying 1m x 1m on the ground. Each obstacle is within a 1 x 1 square formed by the tracks. The movement of the robot is controlled by two commands. These commands are GO and TURN.

The GO command has one integer parameter n in {1,2,3}. After receiving this command the robot moves n meters in the direction it faces.

The TURN command has one parameter which is either left or right. After receiving this command the robot changes its orientation by 90o in the direction indicated by the parameter.

The execution of each command lasts one second.

Help researchers of RMI to write a program which will determine the minimal time in which the robot can move from a given starting point to a given destination.

Input

The input consists of blocks of lines. The first line of each block contains two integers M <= 50 and N <= 50 separated by one space. In each of the next M lines there are N numbers one or zero separated by one space. One represents obstacles and zero represents empty squares. (The tracks are between the squares.) The block is terminated by a line containing four positive integers B1 B2 E1 E2 each followed by one space and the word indicating the orientation of the robot at the starting point. B1, B2 are the coordinates of the square in the north-west corner of which the robot is placed (starting point). E1, E2 are the coordinates of square to the north-west corner of which the robot should move (destination point). The orientation of the robot when it has reached the destination point is not prescribed. We use (row, column)-type coordinates, i.e. the coordinates of the upper left (the most north-west) square in the store are 0,0 and the lower right (the most south-east) square are M - 1, N - 1. The orientation is given by the words north or west or south or east. The last block contains only one line with N = 0 and M = 0.

Output

The output contains one line for each block except the last block in the input. The lines are in the order corresponding to the blocks in the input. The line contains minimal number of seconds in which the robot can reach the destination point from the starting point. If there does not exist any path from the starting point to the destination point the line will contain -1.

Sample Input

9 10
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0
7 2 2 7 south
0 0


Sample Output

12

题解:

具有两种操作的广搜,和普通的广搜相比有些不同,普通的广搜一般是一种操作,上下左右,
这一题加上了转向。同时还要注意的是这个机器人本身的大小,这个也就确定了,边界上它是走不了的。

 #include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
#define ll long long
using namespace std;
const int MAX = ;
const int INF = <<;
const int dir[][]{{-,},{,},{,},{,-}};
struct Nod{
int x,y,t,d;
bool operator < (const Nod &a) const{
return t > a.t;
}
};
int g[MAX][MAX], n, m, mark[MAX][MAX][];
int bfs(int bx, int by, int ex, int ey, int f) {
priority_queue<Nod> que;
Nod nod;
mark[bx][by][f] = ;
que.push((Nod){bx,by,,f});
while(!que.empty()) {
nod = que.top();
que.pop();
int x = nod.x, y = nod.y;
if(x == ex && y == ey) return nod.t;
int d = nod.d;
if(mark[x][y][(d+)%] == - || mark[x][y][(d+)%] > nod.t + ){
mark[x][y][(d+)%] = nod.t+;
que.push((Nod){x,y,nod.t+,(d+)%});
}
if(mark[x][y][(d-+)%] == - || mark[x][y][(d-+)%] > nod.t + ){
mark[x][y][(d-+)%] = nod.t + ;
que.push((Nod){x,y,nod.t+,(d-+)%});
}
int nx = x, ny = y;
for(int i = ; i <= ; i ++) {
nx += dir[d][];
ny += dir[d][];
if(nx <= || nx >= m || ny <= || ny >= n)break;
if(g[nx][ny] == || g[nx-][ny] == || g[nx][ny-] == || g[nx-][ny-] == ) break;
if(mark[nx][ny][d] == - || mark[nx][ny][d] > nod.t+){
mark[nx][ny][d] = nod.t+;
que.push((Nod){nx,ny,nod.t+,d});
}
}
}
return -;
}
int main() {
int bx, by, ex, ey, d, ans;
char str[];
while(scanf("%d%d",&m,&n)&&(n+m)) {
for(int i = ; i < m; i ++) {
for(int j = ; j < n; j ++) {
scanf("%d",&g[i][j]);
}
}
scanf("%d %d %d %d %s",&bx,&by,&ex,&ey,str);
if(str[] == 'n') d = ;
else if(str[] == 'e') d = ;
else if(str[] == 's') d = ;
else if(str[] == 'w') d = ;
memset(mark,-,sizeof(mark));
ans = bfs(bx,by,ex,ey,d);
printf("%d\n",ans);
}
return ;
}

ZOJ1310-Robot (BFS)的更多相关文章

  1. UVa 1600 Patrol Robot (BFS最短路 && 略不一样的vis标记)

    题意 : 机器人要从一个m * n 网格的左上角(1,1) 走到右下角(m, n).网格中的一些格子是空地(用0表示),其他格子是障碍(用1表示).机器人每次可以往4个方向走一格,但不能连续地穿越k( ...

  2. poj 2688 Cleaning Robot bfs+dfs

    题目链接 首先bfs, 求出两两之间的距离, 然后dfs就可以. #include <iostream> #include <cstdio> #include <algo ...

  3. Uva 1600 Patrol Robot (BFS 最短路)

    这道题运用的知识点是求最短路的算法.一种方法是利用BFS来求最短路. 需要注意的是,我们要用一个三维数组来表示此状态是否访问过,而不是三维数组.因为相同的坐标可以通过不同的穿墙方式到达. #inclu ...

  4. Japan 2005 Domestic Cleaning Robot /// BFS 状压 二进制位运算 结构体内构造函数 oj22912

    题目大意: 输入w h,接下来输入h行w列的图 ' . ':干净的点:  ' * ' :垃圾:  ' x ' : 墙:  ' o ' : 初始位置: 输出 清理掉所有垃圾的最短路径长度 无则输出-1 ...

  5. UVa 1600 Patrol Robot(BFS)

    题意: 给定一个n*m的图, 有一个机器人需要从左上角(1,1)到右下角(n,m), 网格中一些格子是空地, 一些格子是障碍, 机器人每次能走4个方向, 但不能连续穿越k(0<= k <= ...

  6. POJ 1573 Robot Motion(BFS)

    Robot Motion Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12856   Accepted: 6240 Des ...

  7. UVA 1600 Patrol Robot(机器人穿越障碍最短路线BFS)

    UVA 1600 Patrol Robot   Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu   ...

  8. C. Robot(BFS)

    C. Robot Time Limit: 3000ms Case Time Limit: 3000ms Memory Limit: 262144KB 64-bit integer IO format: ...

  9. UVA12569-Planning mobile robot on Tree (EASY Version)(BFS+状态压缩)

    Problem UVA12569-Planning mobile robot on Tree (EASY Version) Accept:138  Submit:686 Time Limit: 300 ...

  10. UVA1600-Patrol Robot(BFS进阶)

    Problem UVA1600-Patrol Robot Accept:529  Submit:4330 Time Limit: 3000 mSec Problem Description A rob ...

随机推荐

  1. Python requests 调Jenkins登录接口,返回404,但请求地址、请求头、消息主题和抓包的内容都一样

    #coding=utf-8import requests url = "http://localhost:8080/jenkins/j_acegi_security_check"h ...

  2. java 入门如何设计类

    2019/12/24   |    在校大二上学期    |    太原科技大学 初学java后,我们会发现java难点不在于Java语法难学,而是把我们挂在了如何设计类的“吊绳”上了.这恰恰也是小白 ...

  3. vue搭建手顺

    1.环境准备:node.js  vue-cli: $ npm install vue-cli -g 2.建立项目目录:vuedemo,并cd到该目录下 3.$ vue init webpack  vu ...

  4. RocketMQ幂等性问题

    什么是幂等性: 在编程中一个幂等操作的特点是其任意多次执行所产生的影响均与一次执行的影响相同. 当出现消费者对某条消息重复消费的情况时,重复消费的结果与消费一次的结果是相同的,并且多次消费并未对业务系 ...

  5. 洛谷P1063能量项链(区间dp)

    题目描述: 给定一串序列x[],其中的每一个Xi看作看作一颗珠子,每个珠子包含两个参数,head和tail,前一颗的tail值是后一个的head值,珠子呈现环形(是一条项链),所以最后一颗的tail是 ...

  6. 剑指offer-面试题36-二叉搜索树与双向链表-中序遍历

    /* 题目: 将二叉搜索树转化为排序的双向链表,不能创建新的节点, 只能调整节点的指向,返回双向链表的头节点. */ /* 思路: 递归. 二叉搜索树的中序遍历得到的序列是递增序列. 左子树left& ...

  7. 通俗易懂的RESTful API实践详解(含代码)

    来源:点击进入 点击上方链接,版面更好 一.什么是RESTful REST 是面向资源的,这个概念非常重要,而资源是通过 URI 进行暴露,URI 的设计只要负责把资源通过合理方式暴露出来就可以了,对 ...

  8. Mac上的屏幕截图不起作用该如何修复?

    屏幕截图是Mac提供的内置功能,很少有它不起作用.但是由于某些意外的设置或硬件问题,Mac上的屏幕截图有时无法正常工作,这里提供的是Mac上的屏幕截图不起作用该如何修复? 1.在Mac上启用屏幕快照快 ...

  9. Just a Hook HDU - 1698Just a Hook HDU - 1698 线段树区间替换

    #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> us ...

  10. 开发FTP服务接口,对外提供接口服务

    注意:本文只适合小文本文件的上传下载,因为post请求是有大小限制的.默认大小是2m,虽然具体数值可以调节,但不适合做大文件的传输 最近公司有这么个需求:以后所有的项目开发中需要使用ftp服务器的地方 ...