ZOJ1310-Robot (BFS)
The Robot Moving Institute is using a robot in their local store to transport different items. Of course the robot should spend only the minimum time necessary when travelling from one place in the store to another. The robot can move only along a straight line (track). All tracks form a rectangular grid. Neighbouring tracks are one meter apart. The store is a rectangle N x M meters and it is entirely covered by this grid. The distance of the track closest to the side of the store is exactly one meter. The robot has a circular shape with diameter equal to 1.6 meter. The track goes through the center of the robot. The robot always faces north, south, west or east. The tracks are in the south-north and in the west-east directions. The robot can move only in the direction it faces. The direction in which it faces can be changed at each track crossing. Initially the robot stands at a track crossing. The obstacles in the store are formed from pieces occupying 1m x 1m on the ground. Each obstacle is within a 1 x 1 square formed by the tracks. The movement of the robot is controlled by two commands. These commands are GO and TURN.
The GO command has one integer parameter n in {1,2,3}. After receiving this command the robot moves n meters in the direction it faces.
The TURN command has one parameter which is either left or right. After receiving this command the robot changes its orientation by 90o in the direction indicated by the parameter.
The execution of each command lasts one second.
Help researchers of RMI to write a program which will determine the minimal time in which the robot can move from a given starting point to a given destination.
Input
The input consists of blocks of lines. The first line of each block contains two integers M <= 50 and N <= 50 separated by one space. In each of the next M lines there are N numbers one or zero separated by one space. One represents obstacles and zero represents empty squares. (The tracks are between the squares.) The block is terminated by a line containing four positive integers B1 B2 E1 E2 each followed by one space and the word indicating the orientation of the robot at the starting point. B1, B2 are the coordinates of the square in the north-west corner of which the robot is placed (starting point). E1, E2 are the coordinates of square to the north-west corner of which the robot should move (destination point). The orientation of the robot when it has reached the destination point is not prescribed. We use (row, column)-type coordinates, i.e. the coordinates of the upper left (the most north-west) square in the store are 0,0 and the lower right (the most south-east) square are M - 1, N - 1. The orientation is given by the words north or west or south or east. The last block contains only one line with N = 0 and M = 0.
Output
The output contains one line for each block except the last block in the input. The lines are in the order corresponding to the blocks in the input. The line contains minimal number of seconds in which the robot can reach the destination point from the starting point. If there does not exist any path from the starting point to the destination point the line will contain -1.
Sample Input
9 10
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0
7 2 2 7 south
0 0
Sample Output
12
题解:
具有两种操作的广搜,和普通的广搜相比有些不同,普通的广搜一般是一种操作,上下左右,
这一题加上了转向。同时还要注意的是这个机器人本身的大小,这个也就确定了,边界上它是走不了的。
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
#define ll long long
using namespace std;
const int MAX = ;
const int INF = <<;
const int dir[][]{{-,},{,},{,},{,-}};
struct Nod{
int x,y,t,d;
bool operator < (const Nod &a) const{
return t > a.t;
}
};
int g[MAX][MAX], n, m, mark[MAX][MAX][];
int bfs(int bx, int by, int ex, int ey, int f) {
priority_queue<Nod> que;
Nod nod;
mark[bx][by][f] = ;
que.push((Nod){bx,by,,f});
while(!que.empty()) {
nod = que.top();
que.pop();
int x = nod.x, y = nod.y;
if(x == ex && y == ey) return nod.t;
int d = nod.d;
if(mark[x][y][(d+)%] == - || mark[x][y][(d+)%] > nod.t + ){
mark[x][y][(d+)%] = nod.t+;
que.push((Nod){x,y,nod.t+,(d+)%});
}
if(mark[x][y][(d-+)%] == - || mark[x][y][(d-+)%] > nod.t + ){
mark[x][y][(d-+)%] = nod.t + ;
que.push((Nod){x,y,nod.t+,(d-+)%});
}
int nx = x, ny = y;
for(int i = ; i <= ; i ++) {
nx += dir[d][];
ny += dir[d][];
if(nx <= || nx >= m || ny <= || ny >= n)break;
if(g[nx][ny] == || g[nx-][ny] == || g[nx][ny-] == || g[nx-][ny-] == ) break;
if(mark[nx][ny][d] == - || mark[nx][ny][d] > nod.t+){
mark[nx][ny][d] = nod.t+;
que.push((Nod){nx,ny,nod.t+,d});
}
}
}
return -;
}
int main() {
int bx, by, ex, ey, d, ans;
char str[];
while(scanf("%d%d",&m,&n)&&(n+m)) {
for(int i = ; i < m; i ++) {
for(int j = ; j < n; j ++) {
scanf("%d",&g[i][j]);
}
}
scanf("%d %d %d %d %s",&bx,&by,&ex,&ey,str);
if(str[] == 'n') d = ;
else if(str[] == 'e') d = ;
else if(str[] == 's') d = ;
else if(str[] == 'w') d = ;
memset(mark,-,sizeof(mark));
ans = bfs(bx,by,ex,ey,d);
printf("%d\n",ans);
}
return ;
}
ZOJ1310-Robot (BFS)的更多相关文章
- UVa 1600 Patrol Robot (BFS最短路 && 略不一样的vis标记)
题意 : 机器人要从一个m * n 网格的左上角(1,1) 走到右下角(m, n).网格中的一些格子是空地(用0表示),其他格子是障碍(用1表示).机器人每次可以往4个方向走一格,但不能连续地穿越k( ...
- poj 2688 Cleaning Robot bfs+dfs
题目链接 首先bfs, 求出两两之间的距离, 然后dfs就可以. #include <iostream> #include <cstdio> #include <algo ...
- Uva 1600 Patrol Robot (BFS 最短路)
这道题运用的知识点是求最短路的算法.一种方法是利用BFS来求最短路. 需要注意的是,我们要用一个三维数组来表示此状态是否访问过,而不是三维数组.因为相同的坐标可以通过不同的穿墙方式到达. #inclu ...
- Japan 2005 Domestic Cleaning Robot /// BFS 状压 二进制位运算 结构体内构造函数 oj22912
题目大意: 输入w h,接下来输入h行w列的图 ' . ':干净的点: ' * ' :垃圾: ' x ' : 墙: ' o ' : 初始位置: 输出 清理掉所有垃圾的最短路径长度 无则输出-1 ...
- UVa 1600 Patrol Robot(BFS)
题意: 给定一个n*m的图, 有一个机器人需要从左上角(1,1)到右下角(n,m), 网格中一些格子是空地, 一些格子是障碍, 机器人每次能走4个方向, 但不能连续穿越k(0<= k <= ...
- POJ 1573 Robot Motion(BFS)
Robot Motion Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 12856 Accepted: 6240 Des ...
- UVA 1600 Patrol Robot(机器人穿越障碍最短路线BFS)
UVA 1600 Patrol Robot Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu ...
- C. Robot(BFS)
C. Robot Time Limit: 3000ms Case Time Limit: 3000ms Memory Limit: 262144KB 64-bit integer IO format: ...
- UVA12569-Planning mobile robot on Tree (EASY Version)(BFS+状态压缩)
Problem UVA12569-Planning mobile robot on Tree (EASY Version) Accept:138 Submit:686 Time Limit: 300 ...
- UVA1600-Patrol Robot(BFS进阶)
Problem UVA1600-Patrol Robot Accept:529 Submit:4330 Time Limit: 3000 mSec Problem Description A rob ...
随机推荐
- vue.extend 拓展
https://www.w3cplus.com/vue/vue-extend.html https://jspang.com/post/vue2-2.html https://blog.csdn.ne ...
- K8s~为pod添加sidecar进行日志收集
我们在k8s部署服务时,一般来说一个服务会对应一类pod,而pod通过rs实现副本集,而这些pod的日志一般有控制台stdout和文件的,一般会把这些日志最终输出到elasticsearch里,再通过 ...
- Android中点击按钮获取string.xml中内容并弹窗提示
场景 AndroidStudio跑起来第一个App时新手遇到的那些坑: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/details/103797 ...
- pikachu-SQL注入漏洞
一.SQL Inject 漏洞原理概述 1.1 什么是数据库注入漏洞 数据库注入漏洞,主要是开发人员在构建代码的时候,没有对用户输入的值的边界进行安全的考虑,导致攻击者可以通过合法的输入点提交 ...
- 洛谷P1331-搜索基础-什么是矩形?(我的方案)
原题链接:https://www.luogu.com.cn/problem/P1331 简单来说就是给出一个由‘#’和‘.‘组成的矩阵.需要识别存在几个矩形(被完全填充的).如果有矩形相互衔接则认为出 ...
- Gin框架之参数绑定
为了能够更方便的获取请求相关参数,提高开发效率,我们可以基于请求的Content-Type识别请求数据类型并利用反射机制自动提取请求中QueryString.form表单.JSON.XML等参数到结构 ...
- kaks calculator批量计算多个基因的选择压力kaks值
欢迎来到"bio生物信息"的世界 今天给大家带来"批量计算kaks值"的技能. 关于kaks的背景知识我就不介绍了,感兴趣的自行搜索,这里直接开始讲怎么批量计算 ...
- ajax请求携带cookie和自定义请求头header
参考链接:https://blog.csdn.net/menghuanzhiming/article/details/102736312
- BZOJ2005: [Noi2010]能量采集(欧拉函数)
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后, 栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种 ...
- Jekyll 摘要
在 Windows 上安装 Requirements Permalink Ruby version 2.4.0 or above, including all development headers ...