郑昀 基于李丹和刘奎的文档 创建于2014/12/5

关键词:监控、dashboard、PHP、graphite、statsd、whisper、carbon、grafana、influxdb、Python

本文档适用人员:研发和运维员工
提纲:
  1. 监控平台要做到什么程度?为什么要自己做?
  2. 几个通用技术问题
    • 绘图所依赖的数据如何收集?如何加工?如何存储?
    • 图形如何绘制,各种指标如何叠加?
    • 拓扑关系如何绘制?
  3. 技术选型哲学
  4. 最终选了statsd+graphite
  5. 数据的采集
  6. 数据存储的粒度
  7. 天机的技术选型

一,监控平台要做到什么程度?为什么要自己做?
  运维监控满满都是着各种开源系统以及它们的 Dashboard:
  • Zabbix
  • Nagios
  • Centreon
  • Logstash
  • Ganglia+Cacti
以及各种业务指标趋势的 Dashboard。
  我们认为,监控不能只是各种数据的采集和罗列,不仅仅是弄若干个报表并进一步配置成仪表盘,而是有一定智能,仿照我们日常的排查问题思路,建立一定规则,自动检查,深度检查,友情提示

 
  随手举一个例子:
规则:模仿我们发现问题后先检查数据库主从同步是否有问题的习惯
天机系统发现成单金额或验证券数或短信发送条数环比大幅下降后,启动检查规则,
自动逐一检查各种从库的主从同步情况。
如果发现主从延迟超过阈值,则天机 DashBoard 应浮出两条红色警告提示(可点击进入):
  • 5分钟销售数据环比下降50%
  • 某某从库DBXXXX与主库DBYYYY的同步延迟了300秒
如果发现主从同步失败导致了同步停止,则应浮出两条红色警告提示(可点击进入):
  • 5分钟验证券数环比下降40%
  • 某某从库DBXXXX与主库DBYYYY的同步停止,失败原因为:blabla
  就这样,只有自己动手,才能把我们日常分析问题、定位问题的经验变成一条条系统规则,还是那句话:
自动化才是王道。
 
二,几个通用技术问题
  大致想来,李丹刘奎还需要解决这么几个基础问题:
2.1.绘图所依赖的监控原始数据如何收集?如何加工?如何存储?
不同运维指标和业务指标的时间粒度大小不一,1秒、1分钟、5分钟……
数据是业务方自行上报?还是主动采集?考虑一下可伸缩性:如果是数以百计物理机、成千上万个虚拟机或容器的数以万计指标呢?如果采集频率非常高呢?
拿到原始数据后,原始数据至少还要经过 min/max/sum/count/mean/media……等计算才能变为可视化图表要展示的维度。
这些东西又怎么存储?
 
2.2.图形如何绘制,各种指标如何叠加?
  在使用 Centreon 时,我们就抱怨不能把多个维度的指标自由组合后叠加在一张图上看。是的,Centreon 能在一张图上展示某个主机的它定义好的几个指标,如下图所示:
图1 centreon图例
  但我们希望还能把不同主机的不同指标按我们的意愿放在一张图上绘制,也就是可配置的,这样有利于排查问题,能快速看出趋势变化和关联关系。
  其次,绘图得快,而且运维看的都是近乎实时的度量数据,怎么才能足够快。
 
2.3.拓扑关系如何绘制?
  拓扑关系很重要,最好能自动可视化,毕竟一图胜过千言万语。
  随手举个例子:
数据库拓扑关系
在监控系统里登记了 DB 的IP和分组后,其实已经可以探测到 DB 之间的主从关系(包括级联关系)了,能自动绘制出登记的所有数据库服务器之间的关系。举例如下:
图2 自动绘制数据库拓扑
 
三,技术选型哲学
  选型两个重要观点:
  1. 不重复制造轮子;
  2. 既然找轮子,那这个轮子就应该只做一件事,且把它做到最好。
  可供选择的方案有:
  1. grafana + influxdb
  2. statsd + graphite
  3. collectd + graphite
  4. grafana + graphite
 
3.1.StatsD
  2013年eBay 云谈及 OpenStack 的监控和报警时,提及了 statsd 和 graphite,如下图所示:
图3 ebay云的监控报警
  StatsD 是一个 NodeJs 的 daemon 程序,简单轻巧,使用 UDP 协议,专门用来收集数据,收集完数据就发送到其他服务器进行处理。
 
3.2.Graphite

Graphite 是一个企业级的监控工具,用 Python 编写,采用 django 框架,sqlite 数据库存储,自有简单文本协议通讯,绘图功能强大。最初由 Chris Davis 在 Orbitz 工作时,作为一个辅助项目开发的,最终成了一个监控基础工具,如他所言,Graphite provides real-time visualization and storage of numeric time-series data,重点解决:

  • 实时可视化
  • 时间序列数据的存储

严格地说,Graphite 只是一个根据数据绘图的工具,数据收集通常由第三方工具或插件完成,它自带了 carbon 和 whisper,还可根据其协议选用别的数据源供其绘图。官方描述,预计用 Ceres 替代 Whisper。

图4 graphite图例

简单的文本协议和强大的绘图功能使得它可以方便地扩展到任何需要监控的系统上。豆瓣、Google、GitHub、Instagram、Uber等公司都用它。

3.3.CollectD

C语言开发的 collectd 是一个较为古老的工具,像 statsd 一样它也做周期性收集统计数据,collectd 还管数据存储。它能够通过插件支持检测各种各样的系统信息,如数据库、UPS。

要想查看 collectd 收集的信息,还需要安装 web 界面或者 Cacti,于是工作模式就是:

collectd 作为守护进程运行,每隔 10 秒收集信息,而 Cacti 每隔5分钟运行一个 PHP 脚本来收集信息(两者的时间间隔可配置)。

3.4.Influxdb
  InfluxDB 是一个开源分布式时序、事件和指标数据库。使用 Go 语言编写,无需外部依赖。其设计目标是实现分布式和水平伸缩扩展。向这个时间序列数据库插入数据,每条数据都会自动附加上两个字段,一个时间,一个序列号(用来作为主键的)。
特点:
  • schemaless(无结构),可以是任意数量的列
  • Scalable
  • min, max, sum, count, mean, median 一系列函数,方便统计
  • Native HTTP API, 内置http支持,使用http读写
  • Powerful Query Language,类似SQL
  • Built-in Explorer,自带管理工具
管理界面如下图所示:
图5 influxdb图例
 

3.5.Grafana

grafana 则类似 ES Kibana 的可视化面板,有着非常漂亮的图表和布局,目前支持 Graphite、Influxdb 和 Opentsdb) + influxdb(分布式时序、事件和指标数据库)等配搭。

  grafana 与 influxdb 整合后的效果如下图所示:
图6 grafana+influxdb整合图例
 
四,最终选了statsd+graphite
  最终李丹和刘奎选择的方案是:statsd(采集) + graphite(绘制, whisper 负责存储)
  搭建了 Graphite 之后,你可以在它自带的管理站点上看到所有指标的历史数据,可以选时间范围,如下图所示:
图7 graphite管理站点图例
  graphite 管理界面里的图形,请求格式如下所示:
http://graphite系统域名/render/?width=586&height=308&_salt=1410088306.115&target=stats.timers.mysql.172_16_999_999-3306.aborted_clients.upper_90
  如果我们的监控系统要把多个指标拼到一个图形上渲染,则请求格式如下所示:

http://监控系统域名/db/createImage/target/%5B%22stats.timers.mysql.172_16_999_991-3306.com_select_persecond.upper%22%2C%22stats.timers.mysql.172_16_999_992-3306.com_select_persecond.upper%22%2C%22stats.timers.mysql.172_16_999_993-3306.com_select_persecond.upper%22%5D/from/-1hour.html?width=492&n=0.8623758849623238

  从而绘制出如下图形,这就是我在前面2.2小节说想要的特性:
图8 三个主机的指标绘制在一起
 
  Graphite 分为三个组件:
  1. carbon - a Twisted daemon that listens for time-series data
  2. whisper - a simple database library for storing time-series data (similar in design to RRD)
  3. graphite webapp - A Django webapp that renders graphs on-demand using Cairo

它的 High Level 图如下所示:

图9 graphite high level
  从上图看出,Carbon 接到度量数据后,写入 Whisper 库里,Graphite Webapp 去 Whisper 读取数据,系统应该也做了一份缓存,所以你发送数据给 Carbon,立即就可以在 Webapp 中绘图,这也是为什么在磁盘 I/O 反应不过来的时候,Webapp 的图形仍能以接近实时的方式显示的原因。
  下面两张图能帮助大家进一步理解 Graphite 里 Carbon 和 Whisper 如何协同的。

图10 graphite 逻辑图

图11 Graphite 数据流转图

五,数据的采集
  采集数据共有两种方式:Get_Data 和 Push_Data。
  • 天机平台主动拉数据,主要集中在数据库的主从同步、数据库的拓扑关系等这样的关系型数据采集上。
  • 其他场景下,基本都需要采集单点状态的数据,则由客户端脚本(即 agent)获取数据后,再推送到天机平台。
 
  采集到的数据会走 UDP 协议发给 StatsD,由 StatsD 解析、提取、计算处理后,周期性地发送给 Graphite。

数据推送到 Graphite 时,时间周期为1分钟,采集1分钟内的业务数据按照 metric_path value timestamp\n 的格式发送。需要注意的是每次发送的数据必须以 \n 结尾,不能省略。

 
六,数据存储的粒度
  首先,我们需要知道 statsD 默认10秒一个周期,可以通过修改 config.js 的 flushInterval 属性变更。
 
  其次,Graphite 里有一个 retention(保留)的概念,即明确数据精度以及丢弃多久之前的数据,在 /opt/graphite/conf/storage-schemas.conf 配置文件里定义。retention 定义的表达式为 frequency:history,每一个 retention 之间用英文逗号分隔。
  默认是按10秒一个数据的方式,存一天的数据,一天前的数据就没了,如下面的配置所言:
[default_1min_for_1day]
pattern = .*
retentions = 10s:1d

  可以自定义 retentions,注意表达式里每一个时间间隔必须是第一个的倍数,也就是说,第一个是10s,那么第二个只能是10s的整数倍,以此类推。

  天机的数据库监控的粒度为:
[stats]
pattern = ^stats.*
retentions = 10s:1d,30s:7d,1m:28d,15m:5y
  依次解释一下:
10s:1d——1天以内的数据是10秒为一个值,
30s:7d——大于1天小于7天内的数据是以30秒为一个值,
1m:28d——大于7天小于28天内的是以1分钟为一个值,
15m:5y——大于28天小于5年的,是以15分钟为一个值,
大于5年的数据丢弃。

当把10秒的数据降为1分钟数据时,默认是算平均值,但你也可以按合计值、最大值、最小值等,反正都在 storage-aggregation.conf 里配置。

  天机的业务指标监控的粒度为:

[business_monitoring]
pattern = ^business_monitoring\.
retentions = 1m:5y
  为什么这么定义?因为天机要能绘制任意时间段里粒度为1分钟的业务指标曲线图,所以 Graphite 不能缩小精度。
 
七,天机的技术选型
  涉及到的开发语言有:
php,node.js,python,javascript
  涉及相关的框架和服务:
Yii,graphite,StatsD,D3js(数据可视化JS框架),pt-query-digest(分析MySQL慢查日志)
  最后,天机系统的目标是以最有效率的方式查找到事故点,为此要做到数据一体化和自动化。
 
-over-
参考资料:
 

#研发解决方案介绍#基于StatsD+Graphite的智能监控解决方案的更多相关文章

  1. #研发解决方案介绍#基于ES的搜索+筛选+排序解决方案

    郑昀 基于胡耀华和王超的设计文档 最后更新于2014/12/3 关键词:ElasticSearch.Lucene.solr.搜索.facet.高可用.可伸缩.mongodb.SearchHub.商品中 ...

  2. #研发解决方案介绍#Tracing(鹰眼)

    郑昀 最后更新于2014/11/12 关键词:GoogleDapper.分布式跟踪.鹰眼.Tracing.HBase.HDFS. 本文档适用人员:研发   分布式系统为什么需要 Tracing?   ...

  3. #研发解决方案介绍#IdCenter(内部统一认证系统)

    郑昀 基于朱传志的设计文档 最后更新于2014/11/13 关键词:LDAP.认证.权限分配.IdCenter. 本文档适用人员:研发   曾经一个IT内部系统配一套帐号体系和授权   线上生产环境里 ...

  4. #研发解决方案介绍#Recsys-Evaluate(推荐评测)

    郑昀 基于刘金鑫文档 最后更新于2014/12/1 关键词:recsys.推荐评测.Evaluation of Recommender System.piwik.flume.kafka.storm.r ...

  5. #研发中间件介绍#异步消息可靠推送Notify

    郑昀 基于朱传志的设计文档 最后更新于2014/11/11 关键词:异步消息.订阅者集群.可伸缩.Push模式.Pull模式 本文档适用人员:研发   电商系统为什么需要 NotifyServer? ...

  6. #研发中间件介绍#定时任务调度与管理JobCenter

    郑昀 最后更新于2014/11/11 关键词:定时任务.调度.监控报警.Job.crontab.Java 本文档适用人员:研发员工   没有JobCenter时我们要面对的:   电商业务链条很长,业 ...

  7. 手淘架构组最新实践 | iOS基于静态库插桩的⼆进制重排启动优化 抖音研发实践:基于二进制文件重排的解决方案 APP启动速度提升超15% 编译期插桩

    抖音研发实践:基于二进制文件重排的解决方案 APP启动速度提升超15% 原创 Leo 字节跳动技术团队 2019-08-09 https://mp.weixin.qq.com/s/Drmmx5JtjG ...

  8. 构建一个基本的前端自动化开发环境 —— 基于 Gulp 的前端集成解决方案(四)

    通过前面几节的准备工作,对于 npm / node / gulp 应该已经有了基本的认识,本节主要介绍如何构建一个基本的前端自动化开发环境. 下面将逐步构建一个可以自动编译 sass 文件.压缩 ja ...

  9. 在windows下安装gulp —— 基于 Gulp 的前端集成解决方案(一)

    相关连接导航 在windows下安装gulp —— 基于 Gulp 的前端集成解决方案(一) 执行 $Gulp 时发生了什么 —— 基于 Gulp 的前端集成解决方案(二) 常用 Gulp 插件汇总 ...

随机推荐

  1. canvas的用法介绍

    目录 概述 绘图方法 图像处理方法 drawImage方法 getImageData方法,putImageData方法 toDataURL方法 save方法,restore方法 动画 像素处理 灰度效 ...

  2. 如何利用sendmail发送外部邮件?

    在写监控脚本时,为了更好的监控服务器性能,如磁盘空间.系统负载等,有必要在系统出现瓶颈时,及时向管理员进行报告.在这里通常采用邮件报警,同时,邮件设置为收到邮件,即向指定手机号码发送短信.这样可以实现 ...

  3. 升级 Visual Studio 2015 CTP 5 的坑、坑、坑

    前两天,微软发布了 Visual Studio 2015 CTP 5,全称为 Visual Studio 2015 Community Technology Preview 5,意为社区技术预览版,之 ...

  4. HTML5 视频(一)

    HTML5 提供了展示视频的标准 今天,大多数视频是通过插件(比如 Flash)来显示的.然而,并非所有浏览器都拥有同样的插件. HTML5 规定了一种通过 video 元素来包含视频的标准方法. 一 ...

  5. App Widget

    AppWidgetProviderInfo对象: 为App Widget提供元数据(描述数据的数据,如XML.关系型数据的表结构),包括布 局,更新频率等数据.这个对象被定义在XML文件当中: App ...

  6. C# String.Format格式化json字符串中包含"{" "}"报错问题

    json.Append(String.Format("{\"total\":{0},\"row\":{1}}", lineCount, st ...

  7. centos-5.5安装vmvare tools

    centos-5.5安装vmvare tools 虚拟机管理,安装tools 找到VMwareTools压缩包 解压到Desktop,桌面 终端进入桌面 执行程序# ./vmware-install. ...

  8. js赋值运算的理解

    简介 js引擎由于为了效率,很多时候的非直接量赋值都不是copy一份在赋值给新的变量,而是一个引用 ps:直接量:直接值数字字符串等 为什么使用len = doms.length; 里的len效率要比 ...

  9. QTableWidget详解(样式、右键菜单、表头塌陷、多选等)

    在Qt的开发过程中,时常会用到表单(QTableWidget)这个控件,网上的资料不少,但是都是最基本的,有一些比较经常遇到的问题也说得不太清楚.所以,今天就在这里总结一下! 以下为个人模拟Windo ...

  10. redis+cookies实现session机制(解决 手机浏览器不自动回传cookies导致session不可用问题)

    昨天在手机端测试自己的项目遇到如下情况. 1.在手机上(苹果qq浏览器),登陆时存在session中的图片验证码结果,一直获取不到,考虑是cookies的问题.但是其他网站有貌似可以正常使用cooki ...