展开

\(D=(AB-C)A^T\\
=\sum_{i=1}^n(\sum_{j=1}^na_jb_{j,i}-c_i)a_i\\
=\sum_{i=1}^n\sum_{j=1}^na_ia_jb_{i,j}-\sum_{i=1}^na_ic_i\)

对每一对 \(i,j\),同时选获得 \(b_{ij}+b_{ji}\)

某个 \(i\) 不选,额外损失 \(c_i\)

考虑最大权闭合子图

\(S \to (i,j)= b_{ij}+b_{ji}\)

\((i,j) \to i (j) = \infty\)

\(i \to T= c_i\)

跑最大流即可,最后用 \(\sum b_{ij}\) 减去答案

#include <bits/stdc++.h>
using namespace std; const int inf = 1e+9; namespace flow { const int maxn = 300005;
const int inf = 1e+9; int dis[maxn], ans, cnt = 1, s, t, pre[maxn * 10], nxt[maxn * 10], h[maxn], v[maxn * 10];
std::queue<int> q;
void make(int x, int y, int z) {
pre[++cnt] = y, nxt[cnt] = h[x], h[x] = cnt, v[cnt] = z;
pre[++cnt] = x, nxt[cnt] = h[y], h[y] = cnt;
}
bool bfs() {
memset(dis, 0, sizeof dis);
q.push(s), dis[s] = 1;
while (!q.empty()) {
int x = q.front();
q.pop();
for (int i = h[x]; i; i = nxt[i])
if (!dis[pre[i]] && v[i])
dis[pre[i]] = dis[x] + 1, q.push(pre[i]);
}
return dis[t];
}
int dfs(int x, int flow) {
if (x == t || !flow)
return flow;
int f = flow;
for (int i = h[x]; i; i = nxt[i])
if (v[i] && dis[pre[i]] > dis[x]) {
int y = dfs(pre[i], min(v[i], f));
f -= y, v[i] -= y, v[i ^ 1] += y;
if (!f)
return flow;
}
if (f == flow)
dis[x] = -1;
return flow - f;
}
int solve(int _s,int _t) {
s=_s;
t=_t;
ans = 0;
for (; bfs(); ans += dfs(s, inf));
return ans;
}
} int n,b[505][505],c[505]; int id_node(int p) {
return 2+p;
} int id_pair(int p,int q) {
return 2+p*n+q;
} int main() {
scanf("%d",&n);
int sum = 0;
for(int i=1;i<=n;i++) {
for(int j=1;j<=n;j++) {
scanf("%d",&b[i][j]);
sum += b[i][j];
flow::make(1,id_pair(i,j),b[i][j]);
flow::make(id_pair(i,j),id_node(i),inf);
flow::make(id_pair(i,j),id_node(j),inf);
}
}
for(int i=1;i<=n;i++) {
scanf("%d",&c[i]);
flow::make(id_node(i),2,c[i]);
}
cout<<sum - flow::solve(1,2);
}

[TJOI2015] 线性代数 - 最大权闭合子图的更多相关文章

  1. BZOJ3996:[TJOI2015]线性代数(最大权闭合子图)

    Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D Input 第一行输入一个整数N,接 ...

  2. bzoj 3996 线性代数 —— 最大权闭合子图

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3996 把题中的式子拆开看看,发现就是如下关系: 如果 a[i] == 1 && ...

  3. 【BZOJ3996】[TJOI2015]线性代数 最大权闭合图

    [BZOJ3996][TJOI2015]线性代数 Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的 ...

  4. BZOJ_3996_[TJOI2015]线性代数_最大权闭合子图

    BZOJ_3996_[TJOI2015]线性代数_最大权闭合子图 Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大. ...

  5. BZOJ1565 [NOI2009]植物大战僵尸(拓扑排序 + 最大权闭合子图)

    题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=1565 Description Input Output 仅包含一个整数,表示可以 ...

  6. HDU 3879 Base Station(最大权闭合子图)

    经典例题,好像说可以转化成maxflow(n,n+m),暂时只可以勉强理解maxflow(n+m,n+m)的做法. 题意:输入n个点,m条边的无向图.点权为负,边权为正,点权为代价,边权为获益,输出最 ...

  7. [BZOJ 1497][NOI 2006]最大获利(最大权闭合子图)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1497 分析: 这是在有向图中的问题,且边依赖于点,有向图中存在点.边之间的依赖关系可以 ...

  8. HDU4971 A simple brute force problem.(强连通分量缩点 + 最大权闭合子图)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=4971 Description There's a company with several ...

  9. HDU5855 Less Time, More profit(最大权闭合子图)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5855 Description The city planners plan to build ...

随机推荐

  1. Linux下通过二进制方式安装mysql5.7版本和系统优化

    本文主要介绍MySQL二进制软件包的安装/启动/关闭过程. 也许有人要问为什么要选择二进制的安装方式呢? 其实答案很简单,官方版本中已经把所有功能都配置好了,我们可以很方便地拿来使用. 官方MySQL ...

  2. MATLAB中冒号的用法解析

    MATLAB中冒号的用法解析 1.: 表示所有的意思. (1)如:a(1,:) 表示a的第1行,示例: 结果: 同样的如果a(2,:)表示a的第2行 (2)反过来,a(:,2) 表示a的第3列,示例: ...

  3. PLSQL-Initialization error

    1. 情况描述 安装完PLSQL之后,在写入数据库连接信息后,连接数据库,报Initialization error错误 (1)未安装Oracle数据库,无相应的oci.dll文件 (2)已安装数据库 ...

  4. 【一起刷LeetCode】整数反转

    前言&絮叨 别人都忙着参加年会晒奖品,我却忙着写代码.每逢年底都要安排几个紧急项目,我什么时候能摆脱这种宿命. 在忙也不能忘记刷LeetCode,毛毛向前冲!!! 题目描述 给出一个 32 位 ...

  5. ES6之常用开发知识点:入门(一)

    ES6介绍 ES6, 全称 ECMAScript 6.0 ,2015.06 发版. let 和 const命令 let命令 let 命令,用来声明变量.它的用法类似于var,区别在于var声明的变量全 ...

  6. vue(七)--监听属性(watch)

    1.watch:用来监听每一个属性的变化 2.watch这个对象里面都是函数,函数的名称是data中的属性名称,watch中的函数不需要调用 3.当属性发生改变那么就会触发watch函数,每个函数都会 ...

  7. opencv —— copyTo 设置与操作感兴趣区域(ROI)

    感兴趣区域:ROI 对感兴趣区域进行的一系列操作,相当于直接在原图相应部分进行操作. Mat imageROI = srcImage(Rect(0,0,dstImage.cols, dstImage. ...

  8. 【笔记】机器学习 - 李宏毅 - 3 - Bias & Variance

    A more complex model does not always lead to better performance on testing data. Because error due t ...

  9. Nginx-3.控制nginx

    原文 nginx 通过信号来控制.对应linux系统就是用kill命令. The command kill sends the specified signal to the specified pr ...

  10. 一、JVM之类加载器

    一.什么是JVM 先来看下百度百科的解释: JVM 是 Java Virtual Machine(Java 虚拟机)的缩写,JVM 是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计 ...