概率dp的迭代方式小结——zoj3329,hdu4089,hdu4035
在推导期望方程时我们常常会遇到dp[i]和其他项有关联,那么这时候我们就难以按某个顺序进行递推
即难以通过已经确定的项来求出新的项
即未知数的相互关系是循环的
但是我们又可以确定和dp[i]相关联的项是有规律的,即存在一个可以递推dp[i]的通项公式,那么不妨设置未知数,通过原方程的迭代来打破这种循环
为了完成递推,我们需要通过递推和dp[i]有关的参数来间接求出dp[i]
比如递推方程dp[i]总是和dp[1]有关,那么我们可以肯定dp[i]=ai*dp[1]+b[i]
那么用这个方程进行迭代,最后可以发现ai是能够逆着递推的
zoj3329:dp[i]=a[i]dp[0]+b[i]
这题dp[i]总是和dp[0]有关,假设dp[i+k]的值都知道了(等价于常数b[i]),那么a[i]就是个可以递推的项
hdu:dp[i][j]=a[j]*dp[i][i]+c[j]
hdu4035:树上迭代,因为正常的顺序是从叶子推导到根,但是每个结点会受到dp[rt]和dp[fa]的影响, 所以这两项要用两个参数来迭代
dp[u]=a[u]*dp[rt]+b[u]*dp[fa]+c[u]
#include <cstdio>
#include <iostream>
#include <vector>
#include <cmath> using namespace std; const int MAXN = + ; double e[MAXN], k[MAXN];
double A[MAXN], B[MAXN], C[MAXN]; vector<int> v[MAXN]; bool search(int i, int fa)
{
if ( v[i].size() == && fa != - )
{
A[i] = k[i];
B[i] = - k[i] - e[i];
C[i] = - k[i] - e[i];
return true;
} A[i] = k[i];
B[i] = ( - k[i] - e[i]) / v[i].size();
C[i] = - k[i] - e[i];
double tmp = ; for (int j = ; j < (int)v[i].size(); j++)
{
if ( v[i][j] == fa ) continue;
if ( !search(v[i][j], i) ) return false;
A[i] += A[v[i][j]] * B[i];
C[i] += C[v[i][j]] * B[i];
tmp += B[v[i][j]] * B[i];
}
if ( fabs(tmp - ) < 1e- ) return false;
A[i] /= - tmp;
B[i] /= - tmp;
C[i] /= - tmp;
return true;
} int main()
{
int nc, n, s, t; cin >> nc;
for (int ca = ; ca <= nc; ca++)
{
scanf("%d",&n);
for (int i = ; i <= n; i++)
v[i].clear(); for (int i = ; i < n; i++)
{
scanf("%d%d",&s,&t);
v[s].push_back(t);
v[t].push_back(s);
}
for (int i = ; i <= n; i++)
{
scanf("%lf%lf",&k[i],&e[i]);
k[i] /= 100.0;
e[i] /= 100.0;
} cout << "Case " << ca << ": ";
if ( search(, -) && fabs( - A[]) > 1e- )
cout << C[]/( - A[]) << endl;
else
cout << "impossible" << endl;
}
return ;
}
#include <cstdio>
#include <iostream>
#include <vector>
#include <cmath> using namespace std; const int MAXN = + ; double e[MAXN], k[MAXN];
double A[MAXN], B[MAXN], C[MAXN]; vector<int> v[MAXN]; bool search(int i, int fa)
{
if ( v[i].size() == && fa != - )
{
A[i] = k[i];
B[i] = - k[i] - e[i];
C[i] = - k[i] - e[i];
return true;
} A[i] = k[i];
B[i] = ( - k[i] - e[i]) / v[i].size();
C[i] = - k[i] - e[i];
double tmp = ; for (int j = ; j < (int)v[i].size(); j++)
{
if ( v[i][j] == fa ) continue;
if ( !search(v[i][j], i) ) return false;
A[i] += A[v[i][j]] * B[i];
C[i] += C[v[i][j]] * B[i];
tmp += B[v[i][j]] * B[i];
}
if ( fabs(tmp - ) < 1e- ) return false;
A[i] /= - tmp;
B[i] /= - tmp;
C[i] /= - tmp;
return true;
} int main()
{
int nc, n, s, t; cin >> nc;
for (int ca = ; ca <= nc; ca++)
{
scanf("%d",&n);
for (int i = ; i <= n; i++)
v[i].clear(); for (int i = ; i < n; i++)
{
scanf("%d%d",&s,&t);
v[s].push_back(t);
v[t].push_back(s);
}
for (int i = ; i <= n; i++)
{
scanf("%lf%lf",&k[i],&e[i]);
k[i] /= 100.0;
e[i] /= 100.0;
} cout << "Case " << ca << ": ";
if ( search(, -) && fabs( - A[]) > 1e- )
cout << C[]/( - A[]) << endl;
else
cout << "impossible" << endl;
}
return ;
}
#include <cstdio>
#include <iostream>
#include <vector>
#include <cmath> using namespace std; const int MAXN = + ; double e[MAXN], k[MAXN];
double A[MAXN], B[MAXN], C[MAXN]; vector<int> v[MAXN]; bool search(int i, int fa)
{
if ( v[i].size() == && fa != - )
{
A[i] = k[i];
B[i] = - k[i] - e[i];
C[i] = - k[i] - e[i];
return true;
} A[i] = k[i];
B[i] = ( - k[i] - e[i]) / v[i].size();
C[i] = - k[i] - e[i];
double tmp = ; for (int j = ; j < (int)v[i].size(); j++)
{
if ( v[i][j] == fa ) continue;
if ( !search(v[i][j], i) ) return false;
A[i] += A[v[i][j]] * B[i];
C[i] += C[v[i][j]] * B[i];
tmp += B[v[i][j]] * B[i];
}
if ( fabs(tmp - ) < 1e- ) return false;
A[i] /= - tmp;
B[i] /= - tmp;
C[i] /= - tmp;
return true;
} int main()
{
int nc, n, s, t; cin >> nc;
for (int ca = ; ca <= nc; ca++)
{
scanf("%d",&n);
for (int i = ; i <= n; i++)
v[i].clear(); for (int i = ; i < n; i++)
{
scanf("%d%d",&s,&t);
v[s].push_back(t);
v[t].push_back(s);
}
for (int i = ; i <= n; i++)
{
scanf("%lf%lf",&k[i],&e[i]);
k[i] /= 100.0;
e[i] /= 100.0;
} cout << "Case " << ca << ": ";
if ( search(, -) && fabs( - A[]) > 1e- )
cout << C[]/( - A[]) << endl;
else
cout << "impossible" << endl;
}
return ;
}
#include <cstdio>
#include <iostream>
#include <vector>
#include <cmath> using namespace std; const int MAXN = + ; double e[MAXN], k[MAXN];
double A[MAXN], B[MAXN], C[MAXN]; vector<int> v[MAXN]; bool search(int i, int fa)
{
if ( v[i].size() == && fa != - )
{
A[i] = k[i];
B[i] = - k[i] - e[i];
C[i] = - k[i] - e[i];
return true;
} A[i] = k[i];
B[i] = ( - k[i] - e[i]) / v[i].size();
C[i] = - k[i] - e[i];
double tmp = ; for (int j = ; j < (int)v[i].size(); j++)
{
if ( v[i][j] == fa ) continue;
if ( !search(v[i][j], i) ) return false;
A[i] += A[v[i][j]] * B[i];
C[i] += C[v[i][j]] * B[i];
tmp += B[v[i][j]] * B[i];
}
if ( fabs(tmp - ) < 1e- ) return false;
A[i] /= - tmp;
B[i] /= - tmp;
C[i] /= - tmp;
return true;
} int main()
{
int nc, n, s, t; cin >> nc;
for (int ca = ; ca <= nc; ca++)
{
scanf("%d",&n);
for (int i = ; i <= n; i++)
v[i].clear(); for (int i = ; i < n; i++)
{
scanf("%d%d",&s,&t);
v[s].push_back(t);
v[t].push_back(s);
}
for (int i = ; i <= n; i++)
{
scanf("%lf%lf",&k[i],&e[i]);
k[i] /= 100.0;
e[i] /= 100.0;
} cout << "Case " << ca << ": ";
if ( search(, -) && fabs( - A[]) > 1e- )
cout << C[]/( - A[]) << endl;
else
cout << "impossible" << endl;
}
return ;
}
#include <cstdio>
#include <iostream>
#include <vector>
#include <cmath> using namespace std; const int MAXN = + ; double e[MAXN], k[MAXN];
double A[MAXN], B[MAXN], C[MAXN]; vector<int> v[MAXN]; bool search(int i, int fa)
{
if ( v[i].size() == && fa != - )
{
A[i] = k[i];
B[i] = - k[i] - e[i];
C[i] = - k[i] - e[i];
return true;
} A[i] = k[i];
B[i] = ( - k[i] - e[i]) / v[i].size();
C[i] = - k[i] - e[i];
double tmp = ; for (int j = ; j < (int)v[i].size(); j++)
{
if ( v[i][j] == fa ) continue;
if ( !search(v[i][j], i) ) return false;
A[i] += A[v[i][j]] * B[i];
C[i] += C[v[i][j]] * B[i];
tmp += B[v[i][j]] * B[i];
}
if ( fabs(tmp - ) < 1e- ) return false;
A[i] /= - tmp;
B[i] /= - tmp;
C[i] /= - tmp;
return true;
} int main()
{
int nc, n, s, t; cin >> nc;
for (int ca = ; ca <= nc; ca++)
{
scanf("%d",&n);
for (int i = ; i <= n; i++)
v[i].clear(); for (int i = ; i < n; i++)
{
scanf("%d%d",&s,&t);
v[s].push_back(t);
v[t].push_back(s);
}
for (int i = ; i <= n; i++)
{
scanf("%lf%lf",&k[i],&e[i]);
k[i] /= 100.0;
e[i] /= 100.0;
} cout << "Case " << ca << ": ";
if ( search(, -) && fabs( - A[]) > 1e- )
cout << C[]/( - A[]) << endl;
else
cout << "impossible" << endl;
}
return ;
}
概率dp的迭代方式小结——zoj3329,hdu4089,hdu4035的更多相关文章
- ZOJ 3329-One Person Game(概率dp,迭代处理环)
题意: 三个色子有k1,2,k3个面每面标号(1-k1,1-k2,1-k3),一次抛三个色子,得正面向上的三个编号,若这三个标号和给定的三个编号a1,b1,c1对应则总和置零,否则总和加上三个色子标号 ...
- ZOJ3329之经典概率DP
One Person Game Time Limit: 1 Second Memory Limit: 32768 KB Special Judge There is a very ...
- 概率dp小结
好久之前学过,记得是一次亚洲区的前几天看了看概率dp,然后亚洲区就出了一道概率dp,当时虽然做上了,但是感觉有很多地方没懂,今天起早温习了一下,觉得很多地方茅塞顿开,果然学习的话早上效果最好了. 首先 ...
- HDU4089/Uva1498 Activation 概率DP(好题)
题意:Tomato要在服务器上激活一个游戏,一开始服务器序列中有N个人,他排在第M位,每次服务器会对序列中第一位的玩家进行激活,有四种结果: 1.有p1的概率会激活失败,这时候序列的状态是不变的.2. ...
- [HDU 4089]Activation[概率DP]
题意: 有n个人排队等着在官网上激活游戏.Tomato排在第m个. 对于队列中的第一个人.有以下情况: 1.激活失败,留在队列中等待下一次激活(概率为p1) 2.失去连接,出队列,然后排在队列的最后( ...
- 动态规划之经典数学期望和概率DP
起因:在一场训练赛上.有这么一题没做出来. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6829 题目大意:有三个人,他们分别有\(X,Y,Z\)块钱 ...
- HDU 4576 Robot(概率dp)
题目 /*********************复制来的大致题意********************** 有N个数字,M个操作, 区间L, R. 然后问经过M个操作后落在[L, R]的概率. * ...
- HDU 4089 Activation(概率DP)(转)
11年北京现场赛的题目.概率DP. 公式化简起来比较困难....而且就算结果做出来了,没有考虑特殊情况照样会WA到死的.... 去参加区域赛一定要考虑到各种情况. 像概率dp,公式推出来就很容易写 ...
- UVALive 6672 Bonus Cards 概率dp
题意呢 就是有两种售票方式 一种是icpc 一种是其他方式 icpc抢票成功的概率是其他方式的2倍…… 这时 一个人出现了 他通过内幕知道了两种抢票方式各有多少人 他想知道自己如果用icpc抢票成功的 ...
随机推荐
- Linux (raspberry) 安装 telnet server
可能由于内核或者版本问题 ,网上的telnet服务器安装教程,总是无法安装成功 ,下面说说基于debian发行版(树莓派)telnet 服务器端的安装,便于以后的远程访问. 具体可以通过netstat ...
- docker启动elasticsearch异常Failed to create node environment(解决)
异常说是创建节点环境失败,操作/usr/share/elasticsearch/data/nodes的IO错误,尝试给此目录添加读写权限后,依旧没什么**用,灵机一动是不是挂载目录没有权限导致的? c ...
- vue实现curd功能
一.实现效果 二.实现 (一)实现增加用户功能 Vuserlist组件中 <template> <div class="panel panel-default"& ...
- react 组件的构造函数
constructor 函数时组件最先执行的函数 class childen extends react.Component{ constructor(props){ super(props); th ...
- 32. Random类
1.Random class Random implements java.io.Serializable 下面是一个简单验证码的代码: public static void main(String[ ...
- leetcood学习笔记-67-二进制求和
题目描述: 第一次提交: class Solution: def addBinary(self, a: str, b: str) -> str: list_a,list_b=[],[] for ...
- R语言 运算符
R语言运算符 运算符是一个符号,通知编译器执行特定的数学或逻辑操作. R语言具有丰富的内置运算符,并提供以下类型的运算符. 运算符的类型 R语言中拥有如下几种运算符类型: 算术运算符 关系运算符 逻辑 ...
- js简单图片切换
<!DOCTYPE html> <html> <head> <meta charset="utf-8"/> <title> ...
- HDFS(Hadoop Distributed File System)的组件架构概述
1.hadoop1.x和hadoop2.x区别 2.组件介绍 HDFS架构概述1)NameNode(nn): 存储文件的元数据,如文件名,文件目录结构,文件属性(生成时间,副本数,文件权限),以及每个 ...
- 关于移动端使用swiper做图片文字轮播的思考
最近做移动端网页的时候,需要在首页添加一个公告的模块,用来轮播公告消息标题并且能链接到相应的详情页面,最开始用的是swiper插件,在安卓上测试完全没有问题,但是在苹果机上就没有那么灵敏了,来回切换首 ...