在推导期望方程时我们常常会遇到dp[i]和其他项有关联,那么这时候我们就难以按某个顺序进行递推

即难以通过已经确定的项来求出新的项

即未知数的相互关系是循环的

但是我们又可以确定和dp[i]相关联的项是有规律的,即存在一个可以递推dp[i]的通项公式,那么不妨设置未知数,通过原方程的迭代来打破这种循环

为了完成递推,我们需要通过递推和dp[i]有关的参数来间接求出dp[i]

比如递推方程dp[i]总是和dp[1]有关,那么我们可以肯定dp[i]=ai*dp[1]+b[i]

那么用这个方程进行迭代,最后可以发现ai是能够逆着递推的

zoj3329:dp[i]=a[i]dp[0]+b[i]

这题dp[i]总是和dp[0]有关,假设dp[i+k]的值都知道了(等价于常数b[i]),那么a[i]就是个可以递推的项

hdu:dp[i][j]=a[j]*dp[i][i]+c[j]

hdu4035:树上迭代,因为正常的顺序是从叶子推导到根,但是每个结点会受到dp[rt]和dp[fa]的影响, 所以这两项要用两个参数来迭代

  dp[u]=a[u]*dp[rt]+b[u]*dp[fa]+c[u]

#include <cstdio>
#include <iostream>
#include <vector>
#include <cmath> using namespace std; const int MAXN = + ; double e[MAXN], k[MAXN];
double A[MAXN], B[MAXN], C[MAXN]; vector<int> v[MAXN]; bool search(int i, int fa)
{
if ( v[i].size() == && fa != - )
{
A[i] = k[i];
B[i] = - k[i] - e[i];
C[i] = - k[i] - e[i];
return true;
} A[i] = k[i];
B[i] = ( - k[i] - e[i]) / v[i].size();
C[i] = - k[i] - e[i];
double tmp = ; for (int j = ; j < (int)v[i].size(); j++)
{
if ( v[i][j] == fa ) continue;
if ( !search(v[i][j], i) ) return false;
A[i] += A[v[i][j]] * B[i];
C[i] += C[v[i][j]] * B[i];
tmp += B[v[i][j]] * B[i];
}
if ( fabs(tmp - ) < 1e- ) return false;
A[i] /= - tmp;
B[i] /= - tmp;
C[i] /= - tmp;
return true;
} int main()
{
int nc, n, s, t; cin >> nc;
for (int ca = ; ca <= nc; ca++)
{
scanf("%d",&n);
for (int i = ; i <= n; i++)
v[i].clear(); for (int i = ; i < n; i++)
{
scanf("%d%d",&s,&t);
v[s].push_back(t);
v[t].push_back(s);
}
for (int i = ; i <= n; i++)
{
scanf("%lf%lf",&k[i],&e[i]);
k[i] /= 100.0;
e[i] /= 100.0;
} cout << "Case " << ca << ": ";
if ( search(, -) && fabs( - A[]) > 1e- )
cout << C[]/( - A[]) << endl;
else
cout << "impossible" << endl;
}
return ;
}
#include <cstdio>
#include <iostream>
#include <vector>
#include <cmath> using namespace std; const int MAXN = + ; double e[MAXN], k[MAXN];
double A[MAXN], B[MAXN], C[MAXN]; vector<int> v[MAXN]; bool search(int i, int fa)
{
if ( v[i].size() == && fa != - )
{
A[i] = k[i];
B[i] = - k[i] - e[i];
C[i] = - k[i] - e[i];
return true;
} A[i] = k[i];
B[i] = ( - k[i] - e[i]) / v[i].size();
C[i] = - k[i] - e[i];
double tmp = ; for (int j = ; j < (int)v[i].size(); j++)
{
if ( v[i][j] == fa ) continue;
if ( !search(v[i][j], i) ) return false;
A[i] += A[v[i][j]] * B[i];
C[i] += C[v[i][j]] * B[i];
tmp += B[v[i][j]] * B[i];
}
if ( fabs(tmp - ) < 1e- ) return false;
A[i] /= - tmp;
B[i] /= - tmp;
C[i] /= - tmp;
return true;
} int main()
{
int nc, n, s, t; cin >> nc;
for (int ca = ; ca <= nc; ca++)
{
scanf("%d",&n);
for (int i = ; i <= n; i++)
v[i].clear(); for (int i = ; i < n; i++)
{
scanf("%d%d",&s,&t);
v[s].push_back(t);
v[t].push_back(s);
}
for (int i = ; i <= n; i++)
{
scanf("%lf%lf",&k[i],&e[i]);
k[i] /= 100.0;
e[i] /= 100.0;
} cout << "Case " << ca << ": ";
if ( search(, -) && fabs( - A[]) > 1e- )
cout << C[]/( - A[]) << endl;
else
cout << "impossible" << endl;
}
return ;
}
#include <cstdio>
#include <iostream>
#include <vector>
#include <cmath> using namespace std; const int MAXN = + ; double e[MAXN], k[MAXN];
double A[MAXN], B[MAXN], C[MAXN]; vector<int> v[MAXN]; bool search(int i, int fa)
{
if ( v[i].size() == && fa != - )
{
A[i] = k[i];
B[i] = - k[i] - e[i];
C[i] = - k[i] - e[i];
return true;
} A[i] = k[i];
B[i] = ( - k[i] - e[i]) / v[i].size();
C[i] = - k[i] - e[i];
double tmp = ; for (int j = ; j < (int)v[i].size(); j++)
{
if ( v[i][j] == fa ) continue;
if ( !search(v[i][j], i) ) return false;
A[i] += A[v[i][j]] * B[i];
C[i] += C[v[i][j]] * B[i];
tmp += B[v[i][j]] * B[i];
}
if ( fabs(tmp - ) < 1e- ) return false;
A[i] /= - tmp;
B[i] /= - tmp;
C[i] /= - tmp;
return true;
} int main()
{
int nc, n, s, t; cin >> nc;
for (int ca = ; ca <= nc; ca++)
{
scanf("%d",&n);
for (int i = ; i <= n; i++)
v[i].clear(); for (int i = ; i < n; i++)
{
scanf("%d%d",&s,&t);
v[s].push_back(t);
v[t].push_back(s);
}
for (int i = ; i <= n; i++)
{
scanf("%lf%lf",&k[i],&e[i]);
k[i] /= 100.0;
e[i] /= 100.0;
} cout << "Case " << ca << ": ";
if ( search(, -) && fabs( - A[]) > 1e- )
cout << C[]/( - A[]) << endl;
else
cout << "impossible" << endl;
}
return ;
}
#include <cstdio>
#include <iostream>
#include <vector>
#include <cmath> using namespace std; const int MAXN = + ; double e[MAXN], k[MAXN];
double A[MAXN], B[MAXN], C[MAXN]; vector<int> v[MAXN]; bool search(int i, int fa)
{
if ( v[i].size() == && fa != - )
{
A[i] = k[i];
B[i] = - k[i] - e[i];
C[i] = - k[i] - e[i];
return true;
} A[i] = k[i];
B[i] = ( - k[i] - e[i]) / v[i].size();
C[i] = - k[i] - e[i];
double tmp = ; for (int j = ; j < (int)v[i].size(); j++)
{
if ( v[i][j] == fa ) continue;
if ( !search(v[i][j], i) ) return false;
A[i] += A[v[i][j]] * B[i];
C[i] += C[v[i][j]] * B[i];
tmp += B[v[i][j]] * B[i];
}
if ( fabs(tmp - ) < 1e- ) return false;
A[i] /= - tmp;
B[i] /= - tmp;
C[i] /= - tmp;
return true;
} int main()
{
int nc, n, s, t; cin >> nc;
for (int ca = ; ca <= nc; ca++)
{
scanf("%d",&n);
for (int i = ; i <= n; i++)
v[i].clear(); for (int i = ; i < n; i++)
{
scanf("%d%d",&s,&t);
v[s].push_back(t);
v[t].push_back(s);
}
for (int i = ; i <= n; i++)
{
scanf("%lf%lf",&k[i],&e[i]);
k[i] /= 100.0;
e[i] /= 100.0;
} cout << "Case " << ca << ": ";
if ( search(, -) && fabs( - A[]) > 1e- )
cout << C[]/( - A[]) << endl;
else
cout << "impossible" << endl;
}
return ;
}
#include <cstdio>
#include <iostream>
#include <vector>
#include <cmath> using namespace std; const int MAXN = + ; double e[MAXN], k[MAXN];
double A[MAXN], B[MAXN], C[MAXN]; vector<int> v[MAXN]; bool search(int i, int fa)
{
if ( v[i].size() == && fa != - )
{
A[i] = k[i];
B[i] = - k[i] - e[i];
C[i] = - k[i] - e[i];
return true;
} A[i] = k[i];
B[i] = ( - k[i] - e[i]) / v[i].size();
C[i] = - k[i] - e[i];
double tmp = ; for (int j = ; j < (int)v[i].size(); j++)
{
if ( v[i][j] == fa ) continue;
if ( !search(v[i][j], i) ) return false;
A[i] += A[v[i][j]] * B[i];
C[i] += C[v[i][j]] * B[i];
tmp += B[v[i][j]] * B[i];
}
if ( fabs(tmp - ) < 1e- ) return false;
A[i] /= - tmp;
B[i] /= - tmp;
C[i] /= - tmp;
return true;
} int main()
{
int nc, n, s, t; cin >> nc;
for (int ca = ; ca <= nc; ca++)
{
scanf("%d",&n);
for (int i = ; i <= n; i++)
v[i].clear(); for (int i = ; i < n; i++)
{
scanf("%d%d",&s,&t);
v[s].push_back(t);
v[t].push_back(s);
}
for (int i = ; i <= n; i++)
{
scanf("%lf%lf",&k[i],&e[i]);
k[i] /= 100.0;
e[i] /= 100.0;
} cout << "Case " << ca << ": ";
if ( search(, -) && fabs( - A[]) > 1e- )
cout << C[]/( - A[]) << endl;
else
cout << "impossible" << endl;
}
return ;
}

概率dp的迭代方式小结——zoj3329,hdu4089,hdu4035的更多相关文章

  1. ZOJ 3329-One Person Game(概率dp,迭代处理环)

    题意: 三个色子有k1,2,k3个面每面标号(1-k1,1-k2,1-k3),一次抛三个色子,得正面向上的三个编号,若这三个标号和给定的三个编号a1,b1,c1对应则总和置零,否则总和加上三个色子标号 ...

  2. ZOJ3329之经典概率DP

    One Person Game Time Limit: 1 Second      Memory Limit: 32768 KB      Special Judge There is a very ...

  3. 概率dp小结

    好久之前学过,记得是一次亚洲区的前几天看了看概率dp,然后亚洲区就出了一道概率dp,当时虽然做上了,但是感觉有很多地方没懂,今天起早温习了一下,觉得很多地方茅塞顿开,果然学习的话早上效果最好了. 首先 ...

  4. HDU4089/Uva1498 Activation 概率DP(好题)

    题意:Tomato要在服务器上激活一个游戏,一开始服务器序列中有N个人,他排在第M位,每次服务器会对序列中第一位的玩家进行激活,有四种结果: 1.有p1的概率会激活失败,这时候序列的状态是不变的.2. ...

  5. [HDU 4089]Activation[概率DP]

    题意: 有n个人排队等着在官网上激活游戏.Tomato排在第m个. 对于队列中的第一个人.有以下情况: 1.激活失败,留在队列中等待下一次激活(概率为p1) 2.失去连接,出队列,然后排在队列的最后( ...

  6. 动态规划之经典数学期望和概率DP

    起因:在一场训练赛上.有这么一题没做出来. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6829 题目大意:有三个人,他们分别有\(X,Y,Z\)块钱 ...

  7. HDU 4576 Robot(概率dp)

    题目 /*********************复制来的大致题意********************** 有N个数字,M个操作, 区间L, R. 然后问经过M个操作后落在[L, R]的概率. * ...

  8. HDU 4089 Activation(概率DP)(转)

    11年北京现场赛的题目.概率DP. 公式化简起来比较困难....而且就算结果做出来了,没有考虑特殊情况照样会WA到死的.... 去参加区域赛一定要考虑到各种情况.   像概率dp,公式推出来就很容易写 ...

  9. UVALive 6672 Bonus Cards 概率dp

    题意呢 就是有两种售票方式 一种是icpc 一种是其他方式 icpc抢票成功的概率是其他方式的2倍…… 这时 一个人出现了 他通过内幕知道了两种抢票方式各有多少人 他想知道自己如果用icpc抢票成功的 ...

随机推荐

  1. Linux (raspberry) 安装 telnet server

    可能由于内核或者版本问题 ,网上的telnet服务器安装教程,总是无法安装成功 ,下面说说基于debian发行版(树莓派)telnet 服务器端的安装,便于以后的远程访问. 具体可以通过netstat ...

  2. docker启动elasticsearch异常Failed to create node environment(解决)

    异常说是创建节点环境失败,操作/usr/share/elasticsearch/data/nodes的IO错误,尝试给此目录添加读写权限后,依旧没什么**用,灵机一动是不是挂载目录没有权限导致的? c ...

  3. vue实现curd功能

    一.实现效果 二.实现 (一)实现增加用户功能 Vuserlist组件中 <template> <div class="panel panel-default"& ...

  4. react 组件的构造函数

    constructor 函数时组件最先执行的函数 class childen extends react.Component{ constructor(props){ super(props); th ...

  5. 32. Random类

    1.Random class Random implements java.io.Serializable 下面是一个简单验证码的代码: public static void main(String[ ...

  6. leetcood学习笔记-67-二进制求和

    题目描述: 第一次提交: class Solution: def addBinary(self, a: str, b: str) -> str: list_a,list_b=[],[] for ...

  7. R语言 运算符

    R语言运算符 运算符是一个符号,通知编译器执行特定的数学或逻辑操作. R语言具有丰富的内置运算符,并提供以下类型的运算符. 运算符的类型 R语言中拥有如下几种运算符类型: 算术运算符 关系运算符 逻辑 ...

  8. js简单图片切换

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"/> <title> ...

  9. HDFS(Hadoop Distributed File System)的组件架构概述

    1.hadoop1.x和hadoop2.x区别 2.组件介绍 HDFS架构概述1)NameNode(nn): 存储文件的元数据,如文件名,文件目录结构,文件属性(生成时间,副本数,文件权限),以及每个 ...

  10. 关于移动端使用swiper做图片文字轮播的思考

    最近做移动端网页的时候,需要在首页添加一个公告的模块,用来轮播公告消息标题并且能链接到相应的详情页面,最开始用的是swiper插件,在安卓上测试完全没有问题,但是在苹果机上就没有那么灵敏了,来回切换首 ...