1. 引入

在Databricks的过去几年中,我们看到了一种新的数据管理范式,该范式出现在许多客户和案例中:LakeHouse。在这篇文章中,我们将描述这种新范式及其相对于先前方案的优势。

数据仓库技术自1980诞生以来一直在发展,其在决策支持和商业智能应用方面拥有悠久的历史,而MPP体系结构使得系统能够处理更大数据量。但是,虽然数据仓库非常适合结构化数据,但许多现代企业必须处理非结构化数据、半结构化数据以及具有高多样性,高速度和高容量的数据。数据仓库不适用于许多此类场景,并且也不是最具成本效益的。

随着公司开始从许多不同源收集大量数据,架构师开始构想一个单一的系统来容纳不同分析产品和工作负载的数据。大约十年前,公司开始构建数据湖:各种格式原始数据的存储库。数据湖虽然适合存储数据,但缺少一些关键功能:不支持事务、无法提高数据质量、缺乏一致性/隔离性,导致几乎不可能混合处理追加(append)和读取,批处理和流处理作业。由于这些原因,数据湖之前的许多承诺尚未实现,在许多情况下还会失去数据仓库的许多好处。

公司对灵活、高性能系统的需求并未减少,如需要各类数据应用程序包括SQL分析、实时监控、数据科学和机器学习的系统。人工智能的大部分最新进展是有可用于更好处理非结构化数据(文本,图像,视频,音频)的模型,这些恰恰是数据仓库未针对优化的数据类型。一种常见的解决方案是使用多个系统,即一个数据湖、几个数据仓库以及其他专用系统(如流、时间序列、图形和图像数据库系统)。维护大量系统会引入额外的复杂性,更重要的是会带来延迟,因为数据专业人员需要在不同系统间移动或复制数据。

2. 什么是LakeHouse?

解决数据湖限制的新系统开始出现,LakeHouse是一种结合了数据湖和数据仓库优势的新范式。LakeHouse使用新的系统设计:直接在用于数据湖的低成本存储上实现与数据仓库中类似的数据结构和数据管理功能。如果你现在需要重新设计数据仓库,鉴于现在存储(以对象存储的形式)廉价且高可靠,不妨可以使用LakeHouse。

LakeHouse有如下关键特性:

  • 事务支持:企业内部许多数据管道通常会并发读写数据。对ACID事务支持确保了多方可使用SQL并发读写数据。
  • 模式执行和治理(Schema enforcement and governance):LakeHouse应该有一种可以支持模式执行和演进、支持DW模式的范式(如star/snowflake-schemas)。该系统应该能够推理数据完整性,并具有健壮的治理和审计机制。
  • BI支持:LakeHouse可以直接在源数据上使用BI工具。这样可以提高数据新鲜度,减少等待时间,降低必须同时在数据湖和数据仓库中操作两个数据副本的成本。
  • 存储与计算分离:这意味着存储和计算使用单独的集群,因此这些系统能够支持更多用户并发和更大数据量。一些现代数据仓库也具有此属性。
  • 开放性:使用的存储格式(如Parquet)是开放式和标准化的,并提供API以便各类工具和引擎(包括机器学习和Python / R库)可以直接有效地访问数据。
  • 支持从非结构化数据到结构化数据的多种数据类型:LakeHouse可用于存储、优化、分析和访问许多数据应用所需的包括图像、视频、音频、半结构化数据和文本等数据类型。
  • 支持各种工作负载:包括数据科学、机器学习以及SQL和分析。可能需要多种工具来支持这些工作负载,但它们底层都依赖同一数据存储库。
  • 端到端流:实时报表是许多企业中的标准应用。对流的支持消除了需要构建单独系统来专门用于服务实时数据应用的需求。

以上是LakeHouse的关键特性,企业级系统可能还需要其他功能特性,如安全和访问控制工具是基本要求,尤其是根据最近的隐私法规,包括审核、保留和沿袭(lineage)在内的数据治理功能变得至关重要。可能还需要使用数据发现( data discovery )工具,例如数据目录(catalog)和数据使用指标。使用LakeHouse,那么就只需为单个系统实施、测试和管理此类企业功能。

3. 早期示例

Databricks平台具有LakeHouse的特性。微软的Azure Synapse Analytics服务Azure Databricks集成,可实现类似LakeHouse模式,其他托管服务(例如BigQueryRedshift Spectrum)具有上面列出的一些LakeHouse功能特性,但它们是主要针对BI和其他SQL应用。企业若想构建系统,可参考适合于构建LakeHouse的开源文件格式(Delta LakeApache IcebergApache Hudi)。

将数据湖和数据仓库合并至一个系统意味着数据团队可以更快地移动,因为他们无需访问多个系统便可使用数据。 在早期的LakeHouse中,SQL与BI工具的集成通常足以满足大多数企业数据仓库的需求。虽然可以使用物化视图和存储过程,但用户可能需要采用其他机制,这些机制与传统数据仓库中的机制不同。后者对于“lift and shift scenarios”尤为重要,“lift and shift scenarios”要求系统所具有的语义与旧的商业数据仓库的语义几乎相同。

LakeHouse对其他类型数据应用的支持又如何呢? LakeHouse的用户可以使用各种标准工具(Spark,Python,R,机器学习库)来处理如数据科学和机器学习等非BI工作负载。数据探索和加工是许多分析和数据科学应用程序的标准。Delta Lake可以让用户逐步改进LakeHouse的数据质量,直到可以使用为止。

尽管分布式文件系统可以用于存储层,但对象存储在LakeHouse中更为常见。对象存储提供低成本、高可用的存储,在大规模并发读取方面表现出色,这是现代数据仓库的基本要求。

4. 从BI到AI

LakeHouse是一种新的数据管理范式,从根本上简化了企业数据基础架构,并且有望在机器学习已渗透到每个行业的时代加速创新。过去公司产品或决策中涉及的大多数数据都是来自操作系统的结构化数据,而如今,许多产品都以计算机视觉和语音模型、文本挖掘等形式集成了AI。而为什么要使用LakeHouse而不是数据湖来进行AI?是因为LakeHouse可以提供数据版本控制、治理、安全性和ACID属性,即使对于非结构化数据也是如此。

当前LakeHouse降低了成本,但它们的性能仍然落后于专门的系统(如数据仓库),但这些系统需要数年的投入和实际部署。同时用户可能会偏爱某些工具(BI工具,IDE,笔记本电脑),因此LakeHouse也需要改善其UX以及与流行工具的连接器,以便更具吸引力。随着技术的不断成熟和发展,这些问题将得到解决。随着时间推移,LakeHouse将缩小这些差距,同时保留服务各种数据应用的更简单、更具成本效益和更强大的能力的核心属性。

什么是LakeHouse?的更多相关文章

  1. Databricks说的Lakehouse是什么?

    在过去的几年里,Lakehouse作为一种新的数据管理范式,已独立出现在Databricks的许多用户和应用案例中.在这篇文章中,我们将阐述这种新范式以及它相对于之前方案的优势. 数据仓库在决策支持和 ...

  2. Lakehouse: 统一数据仓库和高级分析的新一代开放平台

    1. 摘要 数仓架构在未来一段时间内会逐渐消亡,会被一种新的Lakehouse架构取代,该架构主要有如下特性 基于开放的数据格式,如Parquet: 机器学习和数据科学将被作为头等公民支持: 提供卓越 ...

  3. 使用Apache Pulsar + Hudi构建Lakehouse方案了解下?

    1. 动机 Lakehouse最早由Databricks公司提出,其可作为低成本.直接访问云存储并提供传统DBMS管系统性能和ACID事务.版本.审计.索引.缓存.查询优化的数据管理系统,Lakeho ...

  4. 一文带你了解Lakehouse的并发控制:我们是否过于乐观

    1. 概述 如今数据湖上的事务被认为是 Lakehouse 的一个关键特征. 但到目前为止,实际完成了什么? 目前有哪些方法? 它们在现实世界中的表现如何? 这些问题是本博客的重点. 有幸从事过各种数 ...

  5. Halodoc使用 Apache Hudi 构建 Lakehouse的关键经验

    Halodoc 数据工程已经从传统的数据平台 1.0 发展到使用 LakeHouse 架构的现代数据平台 2.0 的改造.在我们之前的博客中,我们提到了我们如何在 Halodoc 实施 Lakehou ...

  6. 基于 Apache Hudi 和DBT 构建开放的Lakehouse

    本博客的重点展示如何利用增量数据处理和执行字段级更新来构建一个开放式 Lakehouse. 我们很高兴地宣布,用户现在可以使用 Apache Hudi + dbt 来构建开放Lakehouse. 在深 ...

  7. 基于 Apache Hudi + Presto + AWS S3 构建开放Lakehouse

    认识Lakehouse 数据仓库被认为是对结构化数据执行分析的标准,但它不能处理非结构化数据. 包括诸如文本.图像.音频.视频和其他格式的信息. 此外机器学习和人工智能在业务的各个方面变得越来越普遍, ...

  8. 印尼医疗龙头企业Halodoc的数据平台转型之Lakehouse架构

    1. 摘要 在 Halodoc,我们始终致力于为最终用户简化医疗保健服务,随着公司的发展,我们不断构建和提供新功能. 我们两年前建立的可能无法支持我们今天管理的数据量,以解决我们决定改进数据平台架构的 ...

  9. Apache Hudi vs Delta Lake:透明TPC-DS Lakehouse性能基准

    1. 介绍 最近几周,人们对比较 Hudi.Delta 和 Iceberg 的表现越来越感兴趣. 我们认为社区应该得到更透明和可重复的分析. 我们想就如何执行和呈现这些基准.它们带来什么价值以及我们应 ...

随机推荐

  1. Java面试思路

    一.javaSE基础 1.java IO流 2.java NIO 3.java集合 4.java注解 5.java泛型 6.java反射 7.java多线程 8.常用String.数组.日期操作 二. ...

  2. 洛谷p2149----两个终点和两个起点,最短路最大交汇长度!!!

    说实话,这题真第一次见,学到了不少有趣的东西,因吹丝汀!! 思路:因为不可能同时并行和相遇(我也不知道为啥,等我会证明了就来说说) 所以正向建边再反向建边,拓扑排序+dp求最下长路,记录下最大的就是解 ...

  3. 多vps管理面板

           iis7远程桌面连接工具,又叫做iis7远程桌面管理软件,是一款绿色小巧,功能实用的远程桌面管理工具,其界面简洁,操作便捷,能够同时远程操作多台服务器,并且多台服务器间可以自由切换,适用 ...

  4. jib-maven-plugin构建镜像

    序言 在本次期末设计当中,应为需要做部署脚本,我们采用的是dockerfile+docker-compose的部署方式,这种方式对vue项目是没有问题的,因为vue下载依赖与打包是分离开来的,即使修改 ...

  5. 在Mac/linux上查找(并终止)进程锁定特定端口的几种方法

    前言  无论是做网站还是做产品,经常使用到杀死某个进程的方法.制作脚本并熟悉运用是一个非常节省时间的方法. 基本命令  查找: [sudo] lsof -i :3000  杀戮 kill -9 方法一 ...

  6. kafka sasl/plain安全认证

    1.SASL认证机制版本支持 SASL/GSSAPI (Kerberos) - starting at version 0.9.0.0SASL/PLAIN - starting at version ...

  7. React框架随笔

    React框架随笔 现在最热门的前端框架有AngularJS.React.Bootstrap等.自从接触了ReactJS,ReactJs的虚拟DOM(Virtual DOM)和组件化的开发深深的吸引了 ...

  8. 2013 ACM/ICPC Asia Regional Online —— Warmup2 ABEGKL

    HDU4716 A. A Computer Graphics Problem A题目描述 题意:输出手机剩余电量,保证给出的数是10的倍数. 题解:水题,按题意输出即可. 代码: #include & ...

  9. 《C++Primer》第五版习题答案--第三章【学习笔记】

    [C++Primer]第五版[学习笔记]习题解答第三章 ps:答案是个人在学习过程中书写,可能存在错漏之处,仅作参考. 作者:cosefy Date: 2020/1/10 第三章:字符串,向量和数组 ...

  10. 【转】Java集合框架面试问题集锦

    Java集合框架(例如基本的数据结构)里包含了最常见的Java常见面试问题.很好地理解集合框架,可以帮助你理解和利用Java的一些高级特性.下面是面试Java核心技术的一些很实用的问题. Q:最常见的 ...