SPSS实例教程:多重线性回归,你用对了么
在实际的医学研究中,一个生理指标或疾病指标往往受到多种因素的共同作用和影响,当研究的因变量为连续变量时,我们通常在统计分析过程中引入多重线性回归模型,来分析一个因变量与多个自变量之间的关联性。
一、多重线性回归的作用
多重线性回归模型在医学研究领域得到了广泛的应用,其作用主要体现在以下几个方面:
1、探索对于因变量具有影响作用的因素;
2、控制混杂因素,评价多个自变量对因变量的独立效应;
3、用已知的自变量来估计和预测因变量的值及其变化。
二、多重线性回归的形式
多重线性回归的一般表达形式为:
由表达式可以看出,每个因变量的实际测量值yi由两部分组成,即 和ei 。
为估计值,即在给定自变量取值时因变量y的估计值,表示能由自变量决定的部分;ei为残差,即因变量实测值yi与估计值 之间的差值,表示不能由自变量决定的部分,而对于残差的分析是多重线性回归建模过程中需要重点关注的地方。
此外在多线性回归的表达式中,b0为常数项,表示当所有自变量取值为0时因变量
的估计值;bi为偏回归系数,表示当其他自变量不变时,xi每改变一个单位时所引起的的 变化量。
三、多重线性回归的适用条件
多重线性回归模型作为一种统计模型,它有严格的适用条件,在建模时也需要对这些适用条件进行判断。但是许多使用者往往忽视了这一点,在使用过程中只是单一的构建模型,最终很有可能得出错误的结论。因此在应用多重线性回归之前,我们应该了解它需要满足哪些前提条件呢?
总结起来可用4个词来概况:线性(Linear),独立(Independence),正态(Normality),齐性(Equal
variance),缩写为LINE原则。
(1)
线性:各自变量xi与因变量yi之间存在线性关系,可以通过绘制散点图来进行判断;
(2)
独立:因变量yi的取值之间相互独立,反映到回归模型中,实际上就是要求残差ei之间相互独立;
(3) 正态性:构建多重线性回归模型后,残差ei服从正态分布;
(4)
方差齐性:残差ei的大小不随xi取值水平的变化而变化,即残差ei具有方差齐性。
只有准确把握了LINE核心原则,才能够保证构建符合统计学要求的多重线性回归模型。但是,由于多重线性回归模型具有一定的“抗偏倚性”,如果只是想通过构建方程来探讨自变量和因变量之间的关联性,而非对因变量进行预测,那么后面两个条件可以适当放宽。
此外,还应该注意以下几点:
(5) 因变量yi为连续性变量,而非分类变量;
(6)
自变量xi可以为连续变量,也可以为分类变量,当自变量为多分类无序变量时,则需要设置哑变量,当为有序变量时,则需要根据等级顺序进行赋值。
(7)
对于自变量xi的分布特征没有具体的限定,只要求自变量xi间相互独立,不存在多重共线性;
(8)
对于样本量的要求,根据经验一般要求样本量应当为纳入模型的自变量的20倍以上为宜,比如模型纳入5个自变量,则样本量应当在100以上为宜。
四、SPSS实例操作
1. 研究设计
某研究人员收集了100名研究者的最大摄氧量(VO2max),并记录了他们的年龄,体重,心率和性别,拟探讨年龄,体重,心率和性别对VO2 max的影响,并希望能够根据一个人的年龄,体重,心率和性别来对他的VO2 max值进行评估和预测。
2. 录入数据
SPSS数据文件如图所示,分析数据结构:
因变量VO2max为连续变量,满足上述条件(5);
自变量中年龄(age),体重(weight),心率(heart_rate)为连续变量,性别(gender)(女=0,男=1)为二分类变量,满足条件(6);
样本量为100,纳入的自变量为4个,满足条件(8)中大于20倍的要求。在满足上述几个基本条件后,根据研究目的研究人员拟采用多重线性回归的方法来进行统计分析,而对于其他几点适用条件我们将在后面的介绍中进行一一验证。
3. 多重线性回归操作
(1)选择Analyze → Regression → Linear
在Linear
Regression对话框中,将VO2max选入Dependent,将age,weight,heart_rate,gender选入Independent(s)中。
点击Method下拉列表,会出现Enter,Stepwise,Remove,Backward,Forward共5种方法可供选择,这里选择默认的Enter法,表示将所有的变量都纳入到回归模型中。(自变量筛选共有5种方法,每种方法的区别我们将会在以后的内容中进行详细介绍。)
(2)点击Statistic选项
在Regression
Coefficients复选框中,勾选Estimates和Confidence Intervals
Level(%)并设定为95,可输出自变量的回归系数及其95%可信区间。
选择Model
fit,输出模型拟合优度的检验结果;选择Descriptive,输出对所有变量的基本统计描述;选择Part and partial
correlations,输出自变量之间的相关系数;选择Collinearity
diagnostics,输出对自变量进行共线性诊断的统计量。
在Residus复选框中,选择Durbin-Watson,输出值用于判断残差之间是否相互独立。选择Casewise
Diagnositics,默认在3倍标准差内来判定离群点。一般来说,95%的值在 ± 2倍标准差内,99%的值在 ±
2.5倍标准差内,可根据具体情况来进行设定。
(3)点击Save选项
在Predicted
Values复选框中选择Unstandardized,保存模型对因变量的原始预测值,在Residuals是复选框中选择Standardized,保存均数为0标准差为1的标准化残差值,在Prediction
Intervals复选框中选择Individuals,设定Confidence
Intervals为95%,保存个体预测值的95%可信区间。
(数据标准化:用观察值减去该变量的均数,然后除以标准差所得,标准化后数据的均数为0,标准差为1,经标准化的数据都是没有单位的纯数量。)
(4)点击Plot选项
在Plots对话框中将*ZRESID(标准化残差)放入Y轴,将*ZPRED(标准化预测值)放入X轴,绘制残差散点图;同时选择Histogram和Normal
probability plot来绘制标准化残差图,考察残差是否符合正态分布;选择Produce all partial
plots绘制每一个自变量与因变量残差的散点图。
(5)点击Continue回到Linear
Regression主对话框,点击OK完成操作。
SPSS实例教程:多重线性回归,你用对了么的更多相关文章
- SPSS数据分析—多重线性回归
只有一个自变量和因变量的线性回归称为简单线性回归,但是实际上,这样单纯的关系在现实世界中几乎不存在,万事万物都是互相联系的,一个问题的产生必定多种因素共同作用的结果. 对于有多个自变量和一个因变量的线 ...
- 图解CSS3制作圆环形进度条的实例教程
圆环形进度条制作的基本思想还是画出基本的弧线图形,然后CSS3中我们可以控制其旋转来串联基本图形,制造出部分消失的效果,下面就来带大家学习图解CSS3制作圆环形进度条的实例教程 首先,当有人说你能不能 ...
- Python导出Excel为Lua/Json/Xml实例教程(三):终极需求
相关链接: Python导出Excel为Lua/Json/Xml实例教程(一):初识Python Python导出Excel为Lua/Json/Xml实例教程(二):xlrd初体验 Python导出E ...
- Python导出Excel为Lua/Json/Xml实例教程(二):xlrd初体验
Python导出Excel为Lua/Json/Xml实例教程(二):xlrd初体验 相关链接: Python导出Excel为Lua/Json/Xml实例教程(一):初识Python Python导出E ...
- Python导出Excel为Lua/Json/Xml实例教程(一):初识Python
Python导出Excel为Lua/Json/Xml实例教程(一):初识Python 相关链接: Python导出Excel为Lua/Json/Xml实例教程(一):初识Python Python导出 ...
- 详解Linux交互式shell脚本中创建对话框实例教程_linux服务器
本教程我们通过实现来讲讲Linux交互式shell脚本中创建各种各样对话框,对话框在Linux中可以友好的提示操作者,感兴趣的朋友可以参考学习一下. 当你在终端环境下安装新的软件时,你可以经常看到信息 ...
- Solr 4.0 部署实例教程
Solr 4.0 部署实例教程 Solr 4.0的入门基础教程,先说一点部署之后肯定会有人用solrj,solr 4.0好像添加了不少东西,其中CommonsHttpSolrServer这个类改名为H ...
- React 入门实例教程(转载)
本人转载自: React 入门实例教程
- 分享本年度最佳的15个 Photoshop 实例教程
毫无疑问,Photoshop 是任何其类型的设计相关工作的最佳工具.有这么多东西,你可以用它来设计,发挥你的想象力,一切皆有可能. 现在,几乎所有的封面图像都会用 Photoshop 来修饰. 您可能 ...
随机推荐
- LightOJ 1341 - Aladdin and the Flying Carpet
题目链接:http://lightoj.com/volume_showproblem.php?problem=1341 题意:给你地毯面积和最小可能边的长度,让你求有几种组合的可能. 题解:这题就厉害 ...
- ubuntu自带截图工具
ubuntu自带的截图工具感觉能够满足基本的截图功能,可以不必安装另外的截图软件. 一般用到的截图类型有三种:全屏.当前活动窗口.自定义区域,其中自定义区域截图是最灵活也是我们用的最多的方式.在ubu ...
- static,final关键字,Object类的tostring方法,equals方法,hashCode方法
1)static关键字 static可以修饰:属性.方法.代码块 静态方法不能访问非静态 属性 或 方法 属性(变量): 成员变量: 静态变量: 通过 类名.静态变量来访问 通过 对象名.静态变量来访 ...
- Byte[]和Stream相互转换
C# Stream 和 byte[] 之间的转换 一. 二进制转换成图片 MemoryStream ms = new MemoryStream(bytes); ms.Position = 0; Ima ...
- 利用redis的bitmap实现用户签到功能
一.场景需求 适用场景如签到送积分.签到领取奖励等,大致需求如下: 比如签到1天送1积分,连续签到2天送2积分,3天送3积分,3天以上均送3积分等. 如果连续签到中断,则重置计数,每月初重置计数. 显 ...
- JavaScript中纯JS写21点游戏
// 21点游戏 分为人机对战和人人对战 // 玩家每次抽一张牌 牌的点数为1-10点随机数 谁更接近21点谁就获胜 let readline = require("readline-syn ...
- iis网站域名绑定
这里解释两种绑定 一.全局ip未分配 二.绑定指定域名 1.添加主机名 注释:没有绑定主机名的进站默认就会被访问.绑定主机名的进站访问特定主机名的网站.
- 引用第三方 chalk 模块
第三方模块没有默认引用到我们的电脑中,我们要进行下载 chalk 这个包是为了使输出不再单调,添加文字背景什么的,改变字体颜色什么的, npm install chalk //只需要写文件包名,不需要 ...
- python函数使用易错举例
关于嵌套: 嵌套使用中, retrun inner ---> 返回的是函数的地址 retrun inner() : ---> 运行inner()函数 ---> 运行i ...
- SpringBoot--springboot启动类和controller的配置
作为一个springboot初学者,在探索过程中难免遇到一些坑,边看书边动手,发现书本中的版本是1.0,而我使用的是最新版2.0,所以有些东西不能完全按照书本进行操作,因为2.0中已经不支持1.0中的 ...