莫烦PyTorch学习笔记(四)——回归
下面的代码说明个整个神经网络模拟回归的过程,代码含有详细注释,直接贴下来了
import torch
from torch.autograd import Variable
import torch.nn.functional as F
import matplotlib.pyplot as plt
#绘制散点图
x=torch.unsqueeze(torch.linspace(-,,),dim=)#x轴共一百个点
y=x.pow()+0.2*torch.rand(x.size())#x^2加上随机浮动
x,y = Variable(x) , Variable(y)
plt.scatter(x.data.numpy(),y.data.numpy())#把散点图画出来
#plt.show()
#神经网络模块
class Net(torch.nn.Module):#继承神经网络模块
def __init__(self,n_features,n_hidden,n_output):#初始化神经网络的超参数
super(Net,self).__init__()#调用父类神经网络模块的初始化方法,上面三行固定步骤,不用深究
self.hidden = torch.nn.Linear(n_features,n_hidden)#指定隐藏层有多少输入,多少输出
self.predict = torch.nn.Linear(n_hidden, n_output)#指定预测层有多少输入,多少输出
def forward(self,x):#搭建神经网络
x = F.relu(self.hidden(x))#积极函数激活加工经过隐藏层的x
x = self.predict(x)#隐藏层的数据经过预测层得到预测结果
return x
net = Net(,,)#声明一个类对象
print(net) plt.ion()#在Plt.ion和plt.ioff之间的代码,交互绘图
plt.show() #神经网络优化器,主要是为了优化我们的神经网络,使他在我们的训练过程中快起来,节省社交网络训练的时间。
optimizer = torch.optim.SGD(net.parameters(),lr = 0.5)#其实就是神经网络的反向传播,第一个参数是更新权重等参数,第二个对应的是学习率
loss_func = torch.nn.MSELoss()#代价损失函数 for t in range():
prediction = net(x)
loss = loss_func(prediction,y)#计算损失
optimizer.zero_grad()#梯度置零
loss.backward()#反向传播
optimizer.step()#计算结点梯度并优化,
if t % == :
plt.cla()# Clear axis即清除当前图形中的之前的轨迹
plt.scatter(x.data.numpy(),y.data.numpy())
plt.plot(x.data.numpy(),prediction.data.numpy(),'r-',lw=)
plt.text(0.5,,'Loss=%.4f' % loss.item())
plt.pause(0.1)
plt.ioff()
plt.show()
莫烦PyTorch学习笔记(四)——回归的更多相关文章
- 莫烦pytorch学习笔记(八)——卷积神经网络(手写数字识别实现)
莫烦视频网址 这个代码实现了预测和可视化 import os # third-party library import torch import torch.nn as nn import torch ...
- 莫烦pytorch学习笔记(七)——Optimizer优化器
各种优化器的比较 莫烦的对各种优化通俗理解的视频 import torch import torch.utils.data as Data import torch.nn.functional as ...
- 莫烦PyTorch学习笔记(五)——模型的存取
import torch from torch.autograd import Variable import matplotlib.pyplot as plt torch.manual_seed() ...
- 莫烦pytorch学习笔记(二)——variable
.简介 torch.autograd.Variable是Autograd的核心类,它封装了Tensor,并整合了反向传播的相关实现 Variable和tensor的区别和联系 Variable是篮子, ...
- 莫烦PyTorch学习笔记(六)——批处理
1.要点 Torch 中提供了一种帮你整理你的数据结构的好东西, 叫做 DataLoader, 我们能用它来包装自己的数据, 进行批训练. 而且批训练可以有很多种途径. 2.DataLoader Da ...
- 莫烦 - Pytorch学习笔记 [ 二 ] CNN ( 1 )
CNN原理和结构 观点提出 关于照片的三种观点引出了CNN的作用. 局部性:某一特征只出现在一张image的局部位置中. 相同性: 同一特征重复出现.例如鸟的羽毛. 不变性:subsampling下图 ...
- 莫烦 - Pytorch学习笔记 [ 一 ]
1. Numpy VS Torch #相互转换 np_data = torch_data.numpy() torch_data = torch.from_numpy(np_data) #abs dat ...
- 莫烦PyTorch学习笔记(五)——分类
import torch from torch.autograd import Variable import torch.nn.functional as F import matplotlib.p ...
- 莫烦PyTorch学习笔记(三)——激励函数
1. sigmod函数 函数公式和图表如下图 在sigmod函数中我们可以看到,其输出是在(0,1)这个开区间内,这点很有意思,可以联想到概率,但是严格意义上讲,不要当成概率.sigmod函数 ...
随机推荐
- debian 源设置 ( apt-get 不能安装)
使用说明 以Jessie为例, 编辑/etc/apt/sources.list文件, 在文件最前面添加以下条目(操作前请做好相应备份) deb http://mirrors.163.com/debia ...
- Python3 From Zero——{最初的意识:007~函数}
一.编写可接受任意数量参数的函数:*.** >>> def test(x, *args, y, **kwargs): ... pass ... >>> test(1 ...
- Flutter 集成到现有iOS工程
前沿 由于我司已经有自己的App,flutter属于技术引进的一部分,也不太可能重新启动一个项目,因此目前我们是将flutter模块形式注入我们的App之中.即:将flutter模块集成到现在有iOS ...
- iOS开发系列-Charles
概述 Charles相当于一个插在服务器和客户端之间的"过滤器".当客户端向服务器发起请求的时候,先到charles进行过滤,然后charles在把最终的数据发送给服务器: 注意: ...
- 随笔记录 grub引导故障修复 2019.8.7
系统备份: [root@localhost ~]# mkdir /abc [root@localhost ~]# mount /dev/sdb1 /abc [root@localhost ~]# dd ...
- Java 基础 - 如何重写equals()
ref:https://www.cnblogs.com/TinyWalker/p/4834685.html -------------------- 编写equals方法的建议: 显示参数命名为oth ...
- 【JZOJ6388】小w的作业
description analysis 二分一个角度,首先假设该弧度角\(\theta \in[{\pi \over 2},\pi]\),要找的直线斜率\(k\in(-∞,\tan\theta]\) ...
- Windows route
ROUTE [-f] [-p] [-4|-6] command [destination] [MASK netmask] [gateway] [METRIC met ...
- PL/SQL创建用户
步骤一:新建 步骤二:填写信息 对应SQL代码 -- Create the user create user WENT identified by "longrise" defau ...
- 阿里云代码管理平台 Teambition Codeup(行云)亮相,为企业代码安全护航
2019杭州云栖大会企业协作与研发效能专场,企业协同平台Teambition负责人齐俊元正式发布阿里云自研的代码管理平台Teambition Codeup(行云),Codeup是一款企业级代码管理产品 ...