Buy Low, Buy Lower

给出一个长度为N序列\(\{a_i\}\),询问最长的严格下降子序列,以及这样的序列的个数,\(1 <= N <= 5000\)。

显然我们可以很轻易地求出严格下降子序列,思维的过程应该是从熟悉走向不熟悉,从自然走向不自然,因此还是照搬老套路,设\(f_i\)表示以i结尾的最长严格下降子序列的长度,\(g_i\)表示这样的序列的方案数。

接着我们发现,方案之所以不能照搬转移,关键在于结尾有多个相同的数,它们的方案发生了叠加,再仔细研究,你会发现,最靠近i的数必然包括了所有的方案,于是我们只要桶排就可以做到寻找最近的数。

注意到数字可能很大,于是可以事先离散化,而且此题需要打高精度,然后就可以做了。

参考代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define il inline
#define ri register
#define Size 5010
using namespace std;
struct lll{
int num[75];
il lll(){clear();}
il void clear(){
memset(num,0,sizeof(num));
num[0]|=true;
}
il void read(){
string s;cin>>s,num[0]=s.size();
for(ri int i(1);i<=num[0];++i)
num[i]=s[num[0]-i]-48;
}
il void print(){
for(int i(num[0]);i;--i)
putchar(num[i]+48);
putchar('\n');
}
il bool operator!(){
return num[0]==1&&num[1]==0;
}
il void operator=(string s){
num[0]=s.size();
for(ri int i(1);i<=num[0];++i)
num[i]=s[num[0]-i]-48;
}
il lll operator+(lll x){
lll y;y.clear();ri int i;
for(i=1;i<=num[0]||i<=x.num[0];++i){
y.num[i]+=num[i]+x.num[i];
if(y.num[i]>9)y.num[i]-=10,++y.num[i+1];
}if(i>1&&!y.num[i])--i;return y.num[0]=i,y;
}
il void operator+=(lll x){
ri int i;
for(i=1;i<=num[0]||i<=x.num[0];++i){
num[i]+=x.num[i];if(num[i]>9)num[i]-=10,++num[i+1];
}while(i>1&&!num[i])--i;num[0]=i;
}
}fp[Size];
struct lsh{
int a[Size],b[Size],n;
il int look(int x){
return b[x];
}
il void prepare(int x,int ar[]){
n=x;
for(ri int i(1);i<=n;++i)
a[i]=ar[i];sort(a+1,a+n+1);
for(ri int i(1);i<=n;++i)
b[i]=dfs(ar[i]);
}
il int dfs(int x){
int l(1),r(n),mid;
while(l<=r){
mid=l+r>>1;
if(a[mid]<x)l=mid+1;
else r=mid-1;
}return l;
}
}L;
bool b[Size];
int a[Size],dp[Size];
il void read(int&);
int main(){
int n;read(n);
for(int i(1);i<=n;++i)read(a[i]);
L.prepare(n,a),a[++n]=-1;
for(int i(1),j;i<=n;++i){
memset(b,0,sizeof(b));
for(j=i-1;j;--j)
if(a[j]>a[i]){
if(dp[j]>dp[i])
dp[i]=dp[j],fp[i]=fp[j],
b[L.look(j)]|=true;
else if(dp[i]==dp[j]&&!b[L.look(j)])
fp[i]+=fp[j],b[L.look(j)]|=true;
}
++dp[i];if(!fp[i])fp[i]="1";
}printf("%d ",dp[n]-1),fp[n].print();
return 0;
}
il void read(int &x){
x&=0;ri char c;while(c=getchar(),c<'0'||c>'9');
while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
}

Buy Low, Buy Lower的更多相关文章

  1. USACO Section 4.3 Buy low,Buy lower(LIS)

    第一眼看到题目,感觉水水的,不就是最长下降子序列嘛!然后写……就呵呵了..要判重,还要高精度……判重我是在计算中加入各种判断.这道题比看上去麻烦一点,但其实还好吧.. #include<cstd ...

  2. POJ-1952 BUY LOW, BUY LOWER(线性DP)

    BUY LOW, BUY LOWER Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 9244 Accepted: 3226 De ...

  3. USACO 4.3 Buy Low, Buy Lower

    Buy Low, Buy Lower The advice to "buy low" is half the formula to success in the stock mar ...

  4. poj1952 BUY LOW, BUY LOWER【线性DP】【输出方案数】

    BUY LOW, BUY LOWER Time Limit: 1000MS   Memory Limit: 30000K Total Submissions:11148   Accepted: 392 ...

  5. 洛谷P2687 [USACO4.3]逢低吸纳Buy Low, Buy Lower

    P2687 [USACO4.3]逢低吸纳Buy Low, Buy Lower 题目描述 “逢低吸纳”是炒股的一条成功秘诀.如果你想成为一个成功的投资者,就要遵守这条秘诀: "逢低吸纳,越低越 ...

  6. POJ 1952 BUY LOW, BUY LOWER 动态规划题解

    Description The advice to "buy low" is half the formula to success in the bovine stock mar ...

  7. [POJ1952]BUY LOW, BUY LOWER

    题目描述 Description The advice to "buy low" is half the formula to success in the bovine stoc ...

  8. BUY LOW, BUY LOWER_最长下降子序列

    Description The advice to "buy low" is half the formula to success in the bovine stock mar ...

  9. POJ 1952 BUY LOW, BUY LOWER

    $dp$. 一开始想了一个$dp$做法,$dp[i][j]$表示前$i$个数字,下降序列长度为$j$的方案数为$dp[i][j]$,这样做需要先离散化然后用树状数组优化,空间复杂度为${n^2}$,时 ...

随机推荐

  1. [已解决]windows安装docker的问题

    windows下载安装docker出现的问题 进入powershell后输入docker --version报错: could not read CA certificate "C:\\Us ...

  2. vue中ref的使用(this.$refs获取为undefined)

    如果你获取到的总是空的,你注意一下: 1.你在哪里调用,和你调用的对象 试试在mounted()里面调用有效果没有 调用的对象是本来就存在的,还是需要数据渲染之后才会出现的,同理,在mounted() ...

  3. Django 框架之前

    返回主目录:Django框架 内容目录: 一.Django框架之前的内容 1.1 web应用程序的架构 1.2 HTTP协议 1.3 纯手写简单web框架 一.Django框架之前d的内容 1.1 w ...

  4. BBS论坛 home主页与个人站点主页

    五.Home主页与个人站点主页 home首页代码: # views.py视图函数部分代码def home(request): # 将数据库中的所有文章展示到主页 article_list = mode ...

  5. Linux网络编程 了解

    IPV4 -- IP地址分类:主机号是区分主机的,网络号是区分网段的 子网掩码是对主机号进行划分子网用的 举例说明: 对 192.168.1.0网段划分4个 其子网掩码 : 拿出主机号的两个位进行划分 ...

  6. <el-table>序号逐次增加,翻页时继续累加,解决翻页时从编号1开始的情况

    注释: scope.$index     当前序号 cuePage 表示当前页码 pageSize   表示每页显示的条数

  7. 用jQuery,ajax,实现三级联动封装JS的文件

    // JavaScript Document $(document).ready(function(e) { //找到ID=SANJI的DIV,造三个下拉扔进去 var str = "< ...

  8. Android中的Service详解

    今天我们就来介绍一下Android中的四大组件中的服务Service,说到Service, 它分为本地服务和远程服务:区分这两种服务就是看客户端和服务端是否在同一个进程中,本地服务是在同一进程中的,远 ...

  9. TYVJ1061 Mobile Service

    P1061 Mobile Service 时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述 一个公司有三个移动服务员.如果某个地方有一个请求,某个员工必须赶到那 ...

  10. NOIp2018集训test-9-4

    老张让我们2.5h考NOI%你题,喵喵喵? 因为今(我)天(实)的(在)题(太)鬼(弱)畜(了)了,我还只改了t1. Problem A. reorder 考试的时候大家都写了最长不降子序列,然后全员 ...