Buy Low, Buy Lower

给出一个长度为N序列\(\{a_i\}\),询问最长的严格下降子序列,以及这样的序列的个数,\(1 <= N <= 5000\)。

显然我们可以很轻易地求出严格下降子序列,思维的过程应该是从熟悉走向不熟悉,从自然走向不自然,因此还是照搬老套路,设\(f_i\)表示以i结尾的最长严格下降子序列的长度,\(g_i\)表示这样的序列的方案数。

接着我们发现,方案之所以不能照搬转移,关键在于结尾有多个相同的数,它们的方案发生了叠加,再仔细研究,你会发现,最靠近i的数必然包括了所有的方案,于是我们只要桶排就可以做到寻找最近的数。

注意到数字可能很大,于是可以事先离散化,而且此题需要打高精度,然后就可以做了。

参考代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define il inline
#define ri register
#define Size 5010
using namespace std;
struct lll{
int num[75];
il lll(){clear();}
il void clear(){
memset(num,0,sizeof(num));
num[0]|=true;
}
il void read(){
string s;cin>>s,num[0]=s.size();
for(ri int i(1);i<=num[0];++i)
num[i]=s[num[0]-i]-48;
}
il void print(){
for(int i(num[0]);i;--i)
putchar(num[i]+48);
putchar('\n');
}
il bool operator!(){
return num[0]==1&&num[1]==0;
}
il void operator=(string s){
num[0]=s.size();
for(ri int i(1);i<=num[0];++i)
num[i]=s[num[0]-i]-48;
}
il lll operator+(lll x){
lll y;y.clear();ri int i;
for(i=1;i<=num[0]||i<=x.num[0];++i){
y.num[i]+=num[i]+x.num[i];
if(y.num[i]>9)y.num[i]-=10,++y.num[i+1];
}if(i>1&&!y.num[i])--i;return y.num[0]=i,y;
}
il void operator+=(lll x){
ri int i;
for(i=1;i<=num[0]||i<=x.num[0];++i){
num[i]+=x.num[i];if(num[i]>9)num[i]-=10,++num[i+1];
}while(i>1&&!num[i])--i;num[0]=i;
}
}fp[Size];
struct lsh{
int a[Size],b[Size],n;
il int look(int x){
return b[x];
}
il void prepare(int x,int ar[]){
n=x;
for(ri int i(1);i<=n;++i)
a[i]=ar[i];sort(a+1,a+n+1);
for(ri int i(1);i<=n;++i)
b[i]=dfs(ar[i]);
}
il int dfs(int x){
int l(1),r(n),mid;
while(l<=r){
mid=l+r>>1;
if(a[mid]<x)l=mid+1;
else r=mid-1;
}return l;
}
}L;
bool b[Size];
int a[Size],dp[Size];
il void read(int&);
int main(){
int n;read(n);
for(int i(1);i<=n;++i)read(a[i]);
L.prepare(n,a),a[++n]=-1;
for(int i(1),j;i<=n;++i){
memset(b,0,sizeof(b));
for(j=i-1;j;--j)
if(a[j]>a[i]){
if(dp[j]>dp[i])
dp[i]=dp[j],fp[i]=fp[j],
b[L.look(j)]|=true;
else if(dp[i]==dp[j]&&!b[L.look(j)])
fp[i]+=fp[j],b[L.look(j)]|=true;
}
++dp[i];if(!fp[i])fp[i]="1";
}printf("%d ",dp[n]-1),fp[n].print();
return 0;
}
il void read(int &x){
x&=0;ri char c;while(c=getchar(),c<'0'||c>'9');
while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
}

Buy Low, Buy Lower的更多相关文章

  1. USACO Section 4.3 Buy low,Buy lower(LIS)

    第一眼看到题目,感觉水水的,不就是最长下降子序列嘛!然后写……就呵呵了..要判重,还要高精度……判重我是在计算中加入各种判断.这道题比看上去麻烦一点,但其实还好吧.. #include<cstd ...

  2. POJ-1952 BUY LOW, BUY LOWER(线性DP)

    BUY LOW, BUY LOWER Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 9244 Accepted: 3226 De ...

  3. USACO 4.3 Buy Low, Buy Lower

    Buy Low, Buy Lower The advice to "buy low" is half the formula to success in the stock mar ...

  4. poj1952 BUY LOW, BUY LOWER【线性DP】【输出方案数】

    BUY LOW, BUY LOWER Time Limit: 1000MS   Memory Limit: 30000K Total Submissions:11148   Accepted: 392 ...

  5. 洛谷P2687 [USACO4.3]逢低吸纳Buy Low, Buy Lower

    P2687 [USACO4.3]逢低吸纳Buy Low, Buy Lower 题目描述 “逢低吸纳”是炒股的一条成功秘诀.如果你想成为一个成功的投资者,就要遵守这条秘诀: "逢低吸纳,越低越 ...

  6. POJ 1952 BUY LOW, BUY LOWER 动态规划题解

    Description The advice to "buy low" is half the formula to success in the bovine stock mar ...

  7. [POJ1952]BUY LOW, BUY LOWER

    题目描述 Description The advice to "buy low" is half the formula to success in the bovine stoc ...

  8. BUY LOW, BUY LOWER_最长下降子序列

    Description The advice to "buy low" is half the formula to success in the bovine stock mar ...

  9. POJ 1952 BUY LOW, BUY LOWER

    $dp$. 一开始想了一个$dp$做法,$dp[i][j]$表示前$i$个数字,下降序列长度为$j$的方案数为$dp[i][j]$,这样做需要先离散化然后用树状数组优化,空间复杂度为${n^2}$,时 ...

随机推荐

  1. 解决 IE6 position:fixed 固定定位问题

    #e_float{ _position:absolute; _bottom:auto; _right:50%; _margin-right:-536px; _top:expression(eval(d ...

  2. docker容器的常见操作

    进入容器 docker exec -it 12a022ee8127 /bin/bash 交互模式进入容器 docker exec -it 12a022ee8127 ip a 查看容器的ip等信息 批量 ...

  3. 高级Java必看的10本书

    1.深入理解Java虚拟机:JVM高级特性与最佳实践 本书共分为五大部分,围绕内存管理.执行子系统.程序编译与优化.高效并发等核心主题对JVM进行了全面而深入的分析,深刻揭示了JVM的工作原理. 2. ...

  4. python基础讲解部分&纯小白需要扎实基础

    第一章知识点 一.Python简介 ​ python的创始人为吉多·范罗苏姆(Guido van Rossum),在中国人称龟叔 ​ Python崇尚优美.清晰.简单 应用领域: ​ (1)云计算,写 ...

  5. Selenium3 + Python3自动化测试系列八——警告框处理和下拉框选择

    警告框处理 在WebDriver中处理JavaScript所生成的alert.confirm以及prompt十分简单,具体做法是使用 switch_to.alert 方法定位到 alert/confi ...

  6. 【牛客提高训练营5A】同余方程

    题目 吉老师的题做不动啊 首先\([l_1,r_1],[l_2,r_2]\)并不是非常好做,我们考虑将其拆成前缀信息 设\(solve(n,m)=\sum_{i=0}^n\sum_{j=0}^m[m| ...

  7. ios网络学习------2 用非代理方法实现同步post请求

    #pragma mark - 这是私有方法,尽量不要再方法中直接使用属性,由于一般来说属性都是和界面关联的,我们能够通过參数的方式来使用属性 #pragma mark post登录方法 -(void) ...

  8. Spring-boot整合Redis,遇到的问题

    1.通过set进redis中的数据,get不到 String cityKey ="city_"+id; ValueOperations<String,City> ope ...

  9. (转)Unity UI之GUI使用

    一:GUI技术介绍 二:常见基础控件使用 三:GUILayout自动布局 四:GUI皮肤 一:GUI技术介绍 GUI技术看似成为古老的技术,但是Unity5.x之后并没有取消这种UI传统的技术.Uni ...

  10. leetcood学习笔记-204-计算质数

    题目描述: 第一次提交;(超时): class Solution: def countPrimes(self, n: int) -> int: count = 0 for i in range( ...