• 引入进程池与线程池

  • 使用ProcessPoolExecutor进程池,使用ThreadPoolExecutor

  • 使用shutdown

  • 使用submit同步调用

  • 使用submit异步调用

  • 异步+回调函数

  • 并发实现套接字通信

引入进程池

在学习线程池之前,我们先看一个例子

 # from multiprocessing import Process
# import time
#
# def task(name):
# print('name',name)
# time.sleep(1)
# if __name__ == '__main__':
# start=time.time()
# p1 = Process(target=task,args=("safly1",))
# p2 = Process(target=task, args=("safly2",))
# p3 = Process(target=task, args=("safly3",))
#
# p1.start()
# p2.start()
# p3.start()
#
# p1.join()
# p2.join()
# p3.join()
#
# print("main")
#
# end = time.time()
# print(end- start)

输出如下:

以上的方式是一个个创建进程,这样的耗费时间才1秒多,虽然高效,但是有什么弊端呢? 
如果并发很大的话,会给服务器带来很大的压力,所以引入了进程池的概念

使用ProcessPoolExecutor进程池

什么时候用池:
池的功能是限制启动的进程数或线程数,
什么时候应该限制???
当并发的任务数远远超过了计算机的承受能力时,即无法一次性开启过多的进程数或线程数时
就应该用池的概念将开启的进程数或线程数限制在计算机可承受的范围内

Python3.2开始,标准库为我们提供了concurrent.futures模块,它提供了ThreadPoolExecutor和ProcessPoolExecutor两个类,实现了对threading和multiprocessing的进一步抽象,对编写线程池/进程池提供了直接的支持。

通过ProcessPoolExecutor 来做示例。 
我们来看一个最简单的进程池

 from concurrent.futures import ProcessPoolExecutor
import time
def task(name):
print('name',name)
time.sleep(1)
if __name__ == '__main__':
start=time.time()
p1=ProcessPoolExecutor(2)
for i in range(5):
p1.submit(task,i)
p1.shutdown(wait=True)
print('主')
end=time.time()
print(end-start)

输出如下:

 D:\APPS\Python3.7\python.exe "D:/Python/project one/day20180717/进程池与线程池.py"
name 0
name 1
name 2
name 3
name 4

3.118098258972168 Process finished with exit code 0

简单解释下: 
ProcessPoolExecutor(2)创建一个进程池,容量为2,循环submit出5个进程,然后就在线程池队列里面,执行多个进程,p1.shutdown(wait=True)意思是进程都执行完毕,在执行主进程的内容

使用shutdown

p1.shutdown(wait=True)是进程池内部的进程都执行完毕,才会关闭,然后执行后续代码 
如果改成false呢?看如下代码

 from concurrent.futures import ProcessPoolExecutor
import time
def task(name):
print('name',name)
time.sleep(1)
if __name__ == '__main__':
start=time.time()
p1=ProcessPoolExecutor(2)
for i in range(5):
p1.submit(task,i)
p1.shutdown(wait=False)
print('主')
end=time.time()
print(end-start)

输出如下:

 D:\APPS\Python3.7\python.exe "D:/Python/project one/day20180717/进程池与线程池.py"

0.008975744247436523
name 0
name 1
name 2
name 3
name 4 Process finished with exit code 0

使用submit同步调用

同步:提交完任务后就在原地等待,直到任务运行完毕并且拿到返回值后,才运行下一行代码

from concurrent.futures import ProcessPoolExecutor
import time, random, os def piao(name, n):
print('%s is piaoing %s' % (name, os.getpid()))
time.sleep(1)
return n ** 2 if __name__ == '__main__':
p = ProcessPoolExecutor(2)
start = time.time()
for i in range(5):
res=p.submit(piao,'safly %s' %i,i).result() #同步调用
print(res) p.shutdown(wait=True)
print('主', os.getpid()) stop = time.time()
print(stop - start)
 D:\APPS\Python3.7\python.exe "D:/Python/project one/day20180717/进程池与线程池.py"
safly 0 is piaoing 11448
0
safly 1 is piaoing 11800
1
safly 2 is piaoing 11448
4
safly 3 is piaoing 11800
9
safly 4 is piaoing 11448
16
主 8516
5.095325946807861 Process finished with exit code 0

使用submit异步调用

异步:提交完任务(绑定一个回调函数)后不原地等待,直接运行下一行代码,等到任务运行有返回值自动触发回调的函数的运行

 from concurrent.futures import ThreadPoolExecutor
import time
def task(name):
print('name',name)
time.sleep(1)
if __name__ == '__main__':
start=time.time()
p1=ThreadPoolExecutor(2)
for i in range(5):
p1.submit(task,i)
p1.shutdown(wait=True)
print('主')
end=time.time()
print(end-start)

简单小例子

 D:\APPS\Python3.7\python.exe "D:/Python/project one/day20180717/进程池与线程池.py"
name 0
name 1
name 2
name 3
name 4

3.003053903579712

结果

使用回调函数+异步

进程

# from concurrent.futures import ProcessPoolExecutor,ThreadPoolExecutor
# import os
# import time
# import random
#
# def task(n):
# print('%s run...' %os.getpid())
# time.sleep(5)
# return n**2
#
# def parse(future):
# time.sleep(1)
# res=future.result()
# print('%s 处理了 %s' %(os.getpid(),res))
#
# if __name__ == '__main__':
# pool=ProcessPoolExecutor(4)
# # pool.submit(task,1)
# # pool.submit(task,2)
# # pool.submit(task,3)
# # pool.submit(task,4)
#
# start=time.time()
# for i in range(1,5):
# future=pool.submit(task,i)
# future.add_done_callback(parse) # parse会在futrue有返回值时立刻触发,并且将future当作参数传给parse
# pool.shutdown(wait=True)
# stop=time.time()
# print('主',os.getpid(),(stop - start))

 from concurrent.futures import ProcessPoolExecutor,ThreadPoolExecutor
from threading import current_thread
import os
import time
import random def task(n):
print('%s run...' %current_thread().name)
time.sleep(5)
return n**2 def parse(future):
time.sleep(1)
res=future.result()
print('%s 处理了 %s' %(current_thread().name,res)) if __name__ == '__main__':
pool=ThreadPoolExecutor(4)
start=time.time()
for i in range(1,5):
future=pool.submit(task,i)
future.add_done_callback(parse) # parse会在futrue有返回值时立刻触发,并且将future当作参数传给parse
pool.shutdown(wait=True)
stop=time.time()
print('主',current_thread().name,(stop - start))

线程

并发实现套接字通信

 from socket import *
from threading import Thread def talk(conn):
while True:
try:
data=conn.recv(1024)
if len(data) == 0:break
conn.send(data.upper())
except ConnectionResetError:
break
conn.close() def server(ip,port,backlog=5):
server = socket(AF_INET, SOCK_STREAM)
server.bind((ip, port))
server.listen(backlog) print('starting...')
while True:
conn, addr = server.accept() t = Thread(target=talk, args=(conn,))
t.start() if __name__ == '__main__':
server('127.0.0.1',8080)

服务端

 from socket import *
import os client=socket(AF_INET,SOCK_STREAM)
client.connect(('127.0.0.1',8080)) while True:
msg='%s say hello' %os.getpid()
client.send(msg.encode('utf-8'))
data=client.recv(1024)
print(data.decode('utf-8'))

客户端

扩展:

回调函数(callback)是什么?

以下均来自知乎:

回调函数(callback)是什么? - no.body的回答 - 知乎 https://www.zhihu.com/question/19801131/answer/27459821

非常经典的回答加举例。

Python中的进程池与线程池的更多相关文章

  1. Python中的进程池与线程池(包含代码)

    Python中的进程池与线程池 引入进程池与线程池 使用ProcessPoolExecutor进程池,使用ThreadPoolExecutor 使用shutdown 使用submit同步调用 使用su ...

  2. python中的进程池

    1.进程池的概念 python中,进程池内部会维护一个进程序列.当需要时,程序会去进程池中获取一个进程. 如果进程池序列中没有可供使用的进程,那么程序就会等待,直到进程池中有可用进程为止. 2.进程池 ...

  3. python系列之 - 并发编程(进程池,线程池,协程)

    需要注意一下不能无限的开进程,不能无限的开线程最常用的就是开进程池,开线程池.其中回调函数非常重要回调函数其实可以作为一种编程思想,谁好了谁就去掉 只要你用并发,就会有锁的问题,但是你不能一直去自己加 ...

  4. python并发编程之进程池,线程池,协程

    需要注意一下不能无限的开进程,不能无限的开线程最常用的就是开进程池,开线程池.其中回调函数非常重要回调函数其实可以作为一种编程思想,谁好了谁就去掉 只要你用并发,就会有锁的问题,但是你不能一直去自己加 ...

  5. python并发编程之进程池,线程池concurrent.futures

    进程池与线程池 在刚开始学多进程或多线程时,我们迫不及待地基于多进程或多线程实现并发的套接字通信,然而这种实现方式的致命缺陷是:服务的开启的进程数或线程数都会随着并发的客户端数目地增多而增多, 这会对 ...

  6. Python并发编程之进程池与线程池

    一.进程池与线程池 python标准模块concurrent.futures(并发未来) 1.concurrent.futures模块是用来创建并行的任务,提供了更高级别的接口,为了异步执行调用 2. ...

  7. python 36 进程池、线程池

    目录 1. 死锁与递归锁 2. 信号量Semaphor 3. GIL全局解释器锁:(Cpython) 4. IO.计算密集型对比 4.1 计算密集型: 4.2 IO密集型 5. GIL与Lock锁的区 ...

  8. python并发编程之进程池、线程池、协程

    需要注意一下不能无限的开进程,不能无限的开线程最常用的就是开进程池,开线程池.其中回调函数非常重要回调函数其实可以作为一种编程思想,谁好了谁就去掉 只要你用并发,就会有锁的问题,但是你不能一直去自己加 ...

  9. GIL全局解释器锁、死锁现象、python多线程的用处、进程池与线程池理论

    昨日内容回顾 僵尸进程与孤儿进程 # 僵尸进程: 所有的进程在运行结束之后并不会立刻销毁(父进程需要获取该进程的资源) # 孤儿进程: 子进程正常运行 但是产生该子进程的父进程意外死亡 # 守护进程: ...

随机推荐

  1. transform函数

    C++学习[原创]transform函数的应用 transform(first,last,result,op);//first是容器的首迭代器,last为容器的末迭代器,result为存放结果的容器, ...

  2. dubbo入门学习(五)-----dubbo的高可用

    zookeeper宕机与dubbo直连 现象 zookeeper注册中心宕机,还可以消费dubbo暴露的服务. 原因 健壮性 l 监控中心宕掉不影响使用,只是丢失部分采样数据 l 数据库宕掉后,注册中 ...

  3. RxJS/Cycle.js 与 React/Vue 相比更适用于什么样的应用场景?

    RxJS/Cycle.js 与 React/Vue 相比更适用于什么样的应用场景? RxJS/Cycle.js 与 React/Vue 相比更适用于什么样的应用场景? - 知乎 https://www ...

  4. LeetCode简单算法之删除链表中的节点 #237

    闲来无事,刷刷力扣,以解心头之闷. 题目内容: 请编写一个函数,使其可以删除某个链表中给定的(非末尾)节点,你将只被给定要求被删除的节点. 现有一个链表 -- head = [4,5,1,9],它可以 ...

  5. GULP入门之API(二)

    GULP的API gulp.src(globs[, options]) 输出(Emits)符合所提供的匹配模式(glob)或者匹配模式的数组(array of globs)的文件. 将返回一个 Vin ...

  6. Linux时间设置命令

    1.date: 语法格式:date [-u] [-d datestr] [-s datestr] [--utc] [--universal] [--date=datestr] [--set=dates ...

  7. Ubuntu修改mysql编码格式

    今天在Ubuntu系统上部署了第一个net core的web网站,遇到了mysql入库数据乱码的情况.无奈,ubuntu系统不熟悉,mysql命令不熟悉,只得在网上查找各种资料.还是老规矩,主要参考的 ...

  8. 洛谷P3299 保护出题人

    注意每一关的时候,前一关的植物会消失.保留整数指四舍五入. 解:冷静分析一波,列一个式子出来,发现每一关的植物攻击力要是(ai + ... + aj) / (xi + d * (i - j))的最大值 ...

  9. Win7+AMD+VS2013+opencl1.x安装与测试

    参考资料:http://www.cnblogs.com/lihao602/archive/2013/05/08/3067239.html: http://blog.csdn.net/zhoubo616 ...

  10. loj2322 「清华集训 2017」Hello world!

    https://loj.ac/problem/2322 先吐槽一下,sb数据毁我青春败我前程. 首先,一个数开根开不了多少次. 当我们把它开到1的时候,我们以后就不需要开他了,我们可以利用并查集跳过他 ...