2018-2019 ACM-ICPC, Asia East Continent Finals

总体情况

本次训练共3小时20分钟,通过题数4。

解题报告

D. Deja vu of … Go Players

题意

\(A,B\)博弈,\(A\)有\(N\)堆石子,第\(i\)堆数量\(a_i\); \(B\)有\(M\)堆石子,第\(i\)堆数量\(b_i\)。每次每个人可以从自己拥有的石子堆中选取任意一堆并拿走任意正整数个石子。先拿完的人赢。求胜负情况。$N,M \leq 100, $ $a_i,b_i \leq 10^9, $ \(T \leq 100\)

题解

很显然贪心跑得快,只和堆数有关。根据\(N,M\)的大小关系决定胜负。

L. Eventual … Journey

题意

有\(n\)个点,\(m\)条双向边长度都是\(1\),同时点被分为两类,每类点可以花费\(1\)的代价到任何一个自己同类的点。对所有\(i\),求

\[\sum_{j=1}^n {dist(i \to j)}
\]

数据范围\(n,m \leq 10^5\)

题解

我们设\(d_i\)为点\(i\)与不同于自己类别的点直接相连的数量。设\(a_i\)为点\(i\)的类别,取值\(0\)或\(1\)。设\(s_i\)为第\(i\)类点的数量。设\(c_i\)为第\(i\)类点中有多少个点与另一类点有边直接相连。

对于任意的\(i\),如果

  • \(d_i > 0\),那么显然点\(i\)可以花费\(1\)的代价到任何一个自己同类的点,以及任何一个与自己直接相连的不同类的点,其余的点代价为\(2\),于是答案为

\[n-1+s_{1-a_i}-d_i
\]

  • \(d_i = 0\),那么显然点\(i\)可以花费\(1\)的代价到任何一个与自己同类的点,花费\(2\)的代价到另一类点中与\(i\)所在类别点集有边直接相连的点,花费\(3\)的代价到其余的点。于是答案为

\[3(n-1) - 2(s_i - 1) - c_{1-a_i}
\]

时间复杂度 \(O(n+m)\)

F. Interstellar … Fantasy

题意

给出三维欧几里得空间中两个点的坐标,求不经过一个给定球体的最短路长。

题解

稍作思考,发现如果两点连线段与球体不相交则为线段长,若相交,则答案必然为两线段和一弧的和。保留原来的线段并不是最优解,很容易发现,当两线段与球相切时最优。更准确地,整条路经一定在给定三个点确定的平面上,并且平面与球交出的圆与两条线段相切时就是最优解。

利用点积叉积和矢量定比分点讨论一下即可。

P3 delt=p-q;
db len=delt.abs();
db d=(cross(p-c,q-c).abs())/(len);
if(d<r) {
db d1=(p-c).abs(), d2=(q-c).abs();
db l1=sqrt(d1*d1-r*r), l2=sqrt(d2*d2-r*r);
db theta = acos(dot(p-c,q-c)/(d1*d2)) - acos(r/d1) - acos(r/d2); if(abs(((sqrt(d1*d1-d*d)+sqrt(d2*d2-d*d)))*d - (cross(p-c,q-c).abs()) ) < 1e-5) {
if(d<1e-5) {
if(dot(p-c,q-c)>0) cout<<setiosflags(ios::fixed)<<setprecision(10)<<len<<endl;
else cout<<setiosflags(ios::fixed)<<setprecision(10)<<r*theta + l1 + l2<<endl;
}
else cout<<setiosflags(ios::fixed)<<setprecision(10)<<r*theta + l1 + l2<<endl;
}
else cout<<setiosflags(ios::fixed)<<setprecision(10)<<len<<endl;
}
else cout<<setiosflags(ios::fixed)<<setprecision(10)<<len<<endl;

训练20191009 2018-2019 ACM-ICPC, Asia East Continent Finals的更多相关文章

  1. 2019 ACM/ICPC Asia Regional shanxia D Miku and Generals (二分图黑白染色+01背包)

    Miku is matchless in the world!” As everyone knows, Nakano Miku is interested in Japanese generals, ...

  2. 2018-2019 ACM-ICPC, Asia East Continent Finals I. Misunderstood … Missing(dp)

    题目链接: http://codeforces.com/gym/102056/problem/I 题意: 人物有l两个属性分别是$A,D$ 每个回合人物$A\pm D$ 每个回合有三个选择分别是: 1 ...

  3. 2018-2019 ACM-ICPC, Asia East Continent Finals部分题解

    C:显然每p2个数会有一个0循环,其中22 32 52 72的循环会在200个数中出现,找到p2循环的位置就可以知道首位在模p2意义下是多少,并且循环位置几乎是唯一的(对72不满足但可能的位置也很少) ...

  4. 2018-2019 ACM-ICPC, Asia East Continent Finals Solution

    D. Deja vu of … Go Players 签. #include <bits/stdc++.h> using namespace std; int t, n, m; int m ...

  5. 2016 ACM/ICPC Asia Regional Shenyang Online 1009/HDU 5900 区间dp

    QSC and Master Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) ...

  6. hdu 5444 Elven Postman(二叉树)——2015 ACM/ICPC Asia Regional Changchun Online

    Problem Description Elves are very peculiar creatures. As we all know, they can live for a very long ...

  7. (二叉树)Elven Postman -- HDU -- 54444(2015 ACM/ICPC Asia Regional Changchun Online)

    http://acm.hdu.edu.cn/showproblem.php?pid=5444 Elven Postman Time Limit: 1500/1000 MS (Java/Others)  ...

  8. 2015 ACM/ICPC Asia Regional Changchun Online HDU 5444 Elven Postman【二叉排序树的建树和遍历查找】

    Elven Postman Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)T ...

  9. hduoj 4710 Balls Rearrangement 2013 ACM/ICPC Asia Regional Online —— Warmup

    http://acm.hdu.edu.cn/showproblem.php?pid=4710 Balls Rearrangement Time Limit: 6000/3000 MS (Java/Ot ...

随机推荐

  1. 基于java开发jsp+ssm+mysql实现的在线考试系统 源码下载

    实现的关于在线考试的功能有:用户前台:用户注册登录.查看考试信息.进行考试.查看考试成绩.查看历史考试记录.回顾已考试卷.修改密码.修改个人信息等,后台管理功能(脚手架功能不在这里列出),科目专业管理 ...

  2. mnist识别优化——使用新的fashion mnist进行模型训练

    今天通过论坛偶然知道,在mnist之后,还出现了一个旨在代替经典mnist数据集的Fashion MNIST,同mnist一样,它也是被用作深度学习程序的“hello world”,而且也是由70k张 ...

  3. Java8新特性一览表

    总览 forEach() method in Iterable interface(Iterable接口中的forEach()方法) default and static methods in Int ...

  4. mongoose pushall不支持的错误记录

    该错误发生两次,第一次解决以后第二次碰到又没有想起来怎么解决. 因为采用mongoose+node的后端项目.有两个表实现多对多关系,再中间表不做关联,只在两个主表做了 testlist: [{ ty ...

  5. 洛谷P1551 亲戚

    洛谷P1551 亲戚 原题 题目背景 若某个家族人员过于庞大,要判断两个是否是亲戚,确实还很不容易,现在给出某个亲戚关系图,求任意给出的两个人是否具有亲戚关系. 题目描述 规定:x和y是亲戚,y和z是 ...

  6. Laravel框架中通过EasyWeChat发送公众号模板消息

    环境要求 PHP >= 7.0 PHP cURL 扩展 PHP OpenSSL 扩展 PHP SimpleXML 扩展 PHP fileinfo 拓展 使用composer安装: $ compo ...

  7. sql注入常见绕过技巧

    参考链接:https://blog.csdn.net/huanghelouzi/article/details/82995313 https://www.cnblogs.com/vincy99/p/9 ...

  8. 注解配置springMVC

    在随笔“springMVC项目配置文件”的基础上,进行优化,使用注解配置,控制器类得以简化: 一.注解配置springMVC 1.在HelloController类中,去除实现的Controller接 ...

  9. LeetCode longest substring without repeating characters 题解 Hash表

    题目 Given a string, find the length of the longest substring without repeating characters. Example 1: ...

  10. LeetCode Continuous Subarray Sum 题解 同余前缀和 Hash表

    文章目录 题意 思路 特殊情况k=0 Source Code 1 Source Code 2 题意 给定一个数组和一个整数k,返回是否存在一个长度至少为2的连续子数组的和为k的倍数. 思路 和上一篇博 ...