问题描述

第14届中北大学程序设计竞赛来了,集训队新买了一大堆气球,气球一共有K种颜色(1<=K<=256),气球的颜色从1-K编号。

ZBT童心未泯,他发明了一种摆放气球的游戏,规则如下。

一排有N个桌子,每张桌子上只有一个气球插孔,即每张桌子最多只能放一个气球。编号分别为1-N(1<=N<=100000),每张桌子一开始是空的。现在对这张桌子要进行M次操作(1<=M<=100000),操作的种类一共有2种。

操作1:

操作指令格式: CHANGE L R C

操作含义:在编号为L至编号为R的桌子分别放置颜色为C的气球(如果这些桌子上曾经有气球,则取下原来的气球。因为每张桌子上只能放置一个气球)

操作2:

操作指令格式: QUERY L R

操作含义:输出编号为L到编号为R的桌子上的气球颜色种类数

现在他要求你写程序来完成他的操作,程序的输入输出见输入、输出描述

输入描述

第1行是三个整数N和M以及K,用空格隔开,分别代表桌子的个数、要进行操作指令的个数、以及气球的颜色总数。

接下来M行,每行一个操作指令,格式如上,保证指令中的1<=L<=R<=N, 1<=C<=K

输出描述

如果操作指令中有查询操作(操作2),那么对于每个操作2输出一行,该行中只有一个整数即为该查询操作的答案。

如果全部操作指令中都没有查询操作(操作2),那么请输出” This is a boring game!”(不含引号)

样例输入

10 20 5
QUERY 6 8
CHANGE 5 8 5
CHANGE 2 3 5
CHANGE 9 10 1
QUERY 9 9
QUERY 8 10
CHANGE 2 4 4
CHANGE 9 9 2
QUERY 2 2
CHANGE 8 10 1
CHANGE 6 9 3
CHANGE 10 10 2
QUERY 3 5
QUERY 6 8
QUERY 2 5
QUERY 5 5
QUERY 3 9
QUERY 4 10
CHANGE 5 8 1
QUERY 7 8

样例输出

0
1
2
1
2
1
2
1
3
4
1

题意:维护颜色序列,支持以下操作

  • 区间覆盖(颜色修改)
  • 区间查询颜色种类

前置技能:

  • 线段树基本操作(区间覆盖、区间查询)
  • 状态压缩思想

显然,如果是单点修改的话,等同于洛谷P1903 [国家集训队]数颜色 。有离线做法:CDQ+树状数组/带修莫队和 在线做法:树套树 等多种优雅解法(然而本人都不会)。

但是,因为本题有区间覆盖的操作,导致上述做法失效或转移复杂度过高。

所以该怎么做呢?

本题的操作都是区间操作,可以想到用线段树。观察到颜色种类只有256种,因此可以在每个线段树的结点上存储一个集合,表示这个结点代表的区间里出现颜色的种类。

维护时,区间覆盖还是打Lazytag。当某个区间被完全覆盖需要修改时,把集合中的元素清空,只存入当前修改的一种颜色。

每次递归并下传标记后,当前结点的颜色集合等于左右子节点的颜色集合的并集。

具体维护集合,可以用bitset或者用4个longlong类型变量(相当于手写bitset)。

这里每个结点开一个bitset<300> dat;

区间被完全覆盖,先把这个结点的颜色集合清空,即node[p].dat=0;然后集合里只有覆盖的这种颜色color,即node[p].dat[color]=1。

每次完成对左右儿子的修改后上传操作,当前结点的颜色集合等于左右子节点的颜色集合的并集,即node[p].dat=node[p<<1].dat|node[p<<1|1].dat 。


Code

#include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + 5;
int n, m, k;
bitset<300> ans;//统计答案用
struct SegmentTree {
int l, r, tag;
bitset<300> dat;//相当于每个结点存储一个颜色集合
#define l(p) (node[p].l)
#define r(p) (node[p].r)
#define tag(p) (node[p].tag)
#define ls(p) (p<<1)
#define rs(p) (p<<1|1)
#define mid ((l(p)+r(p))>>1)
} node[N << 2];
void build(int p, int l, int r) {
l(p) = l;
r(p) = r;
if(l == r) return;//初始没有颜色 都是0
build(ls(p), l, mid);
build(rs(p), mid + 1, r);
}
void update(int p, int v) {//结点p被颜色v完全覆盖
tag(p) = v;
node[p].dat = 0;//清空集合
node[p].dat[v] = 1;//集合里只有颜色v
}
void pushdown(int p) {//下传结点p标记
if(tag(p)) {
update(ls(p), tag(p));//更新左右结点
update(rs(p), tag(p));
tag(p) = 0;//清空标记
}
}
void change(int p, int L, int R, int v) {
if(l(p) > R || r(p) < L) return;//修改区间与该节点表示区间没有交集
if(L <= l(p) && r(p) <= R) return update(p, v);//该节点被完全覆盖
pushdown(p);//下传标记
change(ls(p), L, R, v);//修改左右儿子结点
change(rs(p), L, R, v);
node[p].dat = node[ls(p)].dat | node[rs(p)].dat;//当前颜色集合等于左右儿子的集合的并集
}
void query(int p, int L, int R) {//查询时同理
if(l(p) > R || r(p) < L) return;
if(L <= l(p) && r(p) <= R) {
ans = ans | node[p].dat;//这里ans是全局变量
return;
}
pushdown(p);
query(ls(p), L, R);
query(rs(p), L, R);
node[p].dat = node[ls(p)].dat | node[rs(p)].dat;
}
int main() {
scanf("%d%d%d", &n, &m, &k);
build(1, 1, n);
char op[10];
int l, r, c;
bool flag = false;
while(m--) {
scanf("%s%d%d", op, &l, &r);
if(op[0] == 'C') {
scanf("%d", &c);
change(1, l, r, c);
} else if(op[0] == 'Q') {
flag = true;
ans = 0;//清空ans
query(1, l, r);
int res = ans.count();//ans.count()返回ans中有几位是1
printf("%d\n", res);
}
}
if(!flag) puts("This is a boring game!");
return 0;
}

第十四届中北大学ACM程序设计竞赛 J.ZBT的游戏的更多相关文章

  1. 第十四届华中科技大学程序设计竞赛 J Various Tree【数值型一维BFS/最小步数】

    链接:https://www.nowcoder.com/acm/contest/106/J 来源:牛客网 题目描述 It's universally acknowledged that there'r ...

  2. 第十四届华中科技大学程序设计竞赛--J Various Tree

    链接:https://www.nowcoder.com/acm/contest/106/J来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言65536 ...

  3. 第十四届华中科技大学程序设计竞赛决赛同步赛 A - Beauty of Trees

    A - Beauty of Trees 题意: 链接:https://www.nowcoder.com/acm/contest/119/A来源:牛客网 Beauty of Trees 时间限制:C/C ...

  4. 第十四届华中科技大学程序设计竞赛决赛同步赛 F Beautiful Land(01背包,背包体积超大时)

    链接:https://www.nowcoder.com/acm/contest/119/F来源:牛客网 Beautiful Land 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 1 ...

  5. 第十四届华中科技大学程序设计竞赛 K Walking in the Forest【二分答案/最小化最大值】

    链接:https://www.nowcoder.com/acm/contest/106/K 来源:牛客网 题目描述 It's universally acknowledged that there'r ...

  6. 第十四届华中科技大学程序设计竞赛 C Professional Manager【并查集删除/虚点】

    题目描述 It's universally acknowledged that there're innumerable trees in the campus of HUST. Thus a pro ...

  7. 第十四届华中科技大学程序设计竞赛 B Beautiful Trees Cutting【组合数学/费马小定理求逆元/快速幂】

    链接:https://www.nowcoder.com/acm/contest/106/B 来源:牛客网 题目描述 It's universally acknowledged that there'r ...

  8. 第十四届华中科技大学程序设计竞赛 K--Walking in the Forest

    链接:https://www.nowcoder.com/acm/contest/106/K来源:牛客网 题目描述 It’s universally acknowledged that there’re ...

  9. 第十四届华中科技大学程序设计竞赛决赛同步赛 Beautiful Land

    It’s universally acknowledged that there’re innumerable trees in the campus of HUST.Now HUST got a b ...

随机推荐

  1. jquery ajax跨越

    JSONP是一个非官方的协议,它允许在服务器端集成Script tags返回至客户端,通过javascript callback的形式实现跨域访问 1.jsonp之$.ajax js $.ajax({ ...

  2. vue单页应用中,使用setInterval()定时向服务器获取数据,后来跳转页面后,发现还在不停的获取数据。

    使用VUE开发单页项目时遇到这样的问题,mounted中使用setInterval()定时向服务器获取数据,后来跳转页面后,发现还在不停的获取数据.我以为是因为我路由用的push导致的,改成repla ...

  3. Django中的orm的惰性机制

    惰性机制:Publisher.objects.all()或者.filter()等都只是返回了一个QuerySet(查询结果集对象)[https://www.cnblogs.com/chaojiying ...

  4. 2019-9-2-win10-uwp-存放网络图片到本地

    title author date CreateTime categories win10 uwp 存放网络图片到本地 lindexi 2019-09-02 12:57:38 +0800 2018-2 ...

  5. 【CodeVS】1978 Fibonacci数列3

    1978 Fibonacci数列 3 时间限制: 1 s 空间限制: 64000 KB 题目等级 : 青铜 Bronze 题目描述 Description 斐波纳契数列是这样的数列: f1 = 1 f ...

  6. 洛谷P2258 子矩阵[2017年5月计划 清北学堂51精英班Day1]

    题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第2.4行和第2.4.5列交叉位置的元素 ...

  7. jmeter 通过csv data set config 设置参数化后,执行结果显示为<EOF>

    通过csv data set config 设置参数化后,执行结果显示为<EOF>: 反复确认相应的参数的设置均没有问题,其中csv文件编码方式采用uft-8.在csv data set ...

  8. 图文结合深入理解 JS 中的 this 值

    图文结合深入理解 JS 中的 this 值 在 JS 中最常见的莫过于函数了,在函数(方法)中 this 的出现频率特别高,那么 this 到底是什么呢,今天就和大家一起学习总结一下 JS 中的 th ...

  9. 分布式--ActiveMQ 消息中间件(一) https://www.jianshu.com/p/8b9bfe865e38

    1. ActiveMQ 1). ActiveMQ ActiveMQ是Apache所提供的一个开源的消息系统,完全采用Java来实现,因此,它能很好地支持J2EE提出的JMS(Java Message ...

  10. tcpdump抓取udp报文

    使用tcpdump命令抓取UDP 2000端口报文,并将报文保存到当前目录下的udp.cap文件,命令如下: tcpdump -i 网络接口名称 udp port 2000 -w ./udp.cap ...