括号序列问题 uva 1626 poj 1141【区间dp】
首先考虑下面的问题:Code[VS] 3657
我们用以下规则定义一个合法的括号序列:
(1)空序列是合法的
(2)假如S是一个合法的序列,则 (S) 和[S]都是合法的
(3)假如A 和 B 都是合法的,那么AB和BA也是合法的
例如以下是合法的括号序列:
(), [], (()), ([]), ()[], ()[()]
以下是不合法括号序列的:
(, [, ], )(, ([]), ([()
现在给定一些由'(', ')', '[', ,']'构成的序列 ,请添加尽量少的括号,得到一个合法的括号序列。
输入包括号序列S。含最多100个字符(四种字符: '(', ')', '[' and ']') ,都放在一行,中间没有其他多余字符。
使括号序列S成为合法序列需要添加最少的括号数量。
样例输入 Sample Input
([()
样例输出 Sample Output
2
这是LRJ黑书上讲动态规划的第一道例题,我觉得不算简单>_<.,但让我明白了动态规划的两种动机:记忆化搜索和自底向上的递推。先说这道题的理解,黑书上设SiSi+1...Sj最少需要添加d[i,j]个括号。当S是'(S)'或'[S]'形式是很好理解,由于两端是对称的,那么我可以递归考虑里面的:d[i,j]=d[i+1,j-1]。当S是'(S'、'[S'、'S)'、'S]'等类似前面的道理,只不过考虑的分别是d[i,j]=d[i+1,j],d[i,j]=d[i,j-1]。其实让我迷惑的是最后还要把S分成两段Si....Sk,Sk+1...Sj分别求解再相加。后来看了别人博客的解释才明白些。因为S就可以只看成两类,两段匹配的和不匹配的,匹配的直接递归,不匹配的就分成两部分再求解。
所以针对上面的问题,就有了两种dp写法。dp[i][j]表示i、j为开头结尾时需要添加的括号数。
记忆化搜索:参考代码如下。黑书里面写的有我注释那那部分,但是按照上面的分析,其实直接分成dp[i][j]=dp[i+1][j-1]和dp[i][j]=dp[i][k]+dp[k+1][j]就可以了。但是我觉得那部分代码对我理解递归还是个很有帮助的,而且不注释好像更快些。Recursive is amazing!
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN = ;
int dp[MAXN][MAXN];
char s[MAXN]; int dfs(int i, int j)
{
if (dp[i][j] != -) return dp[i][j];
if (i > j) return ;
if (i == j) return ;
int ans = 1e9;
if ((s[i] == '('&&s[j] == ')') || (s[i] == '['&&s[j] == ']'))
ans = min(ans, dfs(i + , j - ));
/*else if (s[i] == '(' || s[i] == '[')
ans = min(ans, dfs(i + 1, j) + 1);
else if (s[j] == ')' || s[j] == ']')
ans = min(ans, dfs(i, j - 1) + 1);*/
for (int k = i; k < j; k++)
ans = min(ans, dfs(i, k) + dfs(k + , j));
return dp[i][j] = ans;
} int main()
{
while (scanf("%s",s)==)
{
int len = strlen(s);
memset(dp, -, sizeof(dp));
printf("%d\n", dfs(, len - ));
}
}
自底向上的递推:其实看起来代码和上面的差不多。也是一样,去掉注释竟然会快些。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN = ;
int dp[MAXN][MAXN];
char s[MAXN]; int main()
{
while (scanf("%s",s)==)
{
int len = strlen(s);
for (int i = ; i < len; i++) {
dp[i][i] = , dp[i][i - ] = ;
}
for (int p = ; p < len; p++)//p指的是i、j之间的距离
{
for (int i = ; i + p < len; i++)
{
int j = i + p;
dp[i][j] = 1e9;
if ((s[i] == '('&&s[j] == ')') || (s[i] == '['&&s[j] == ']'))
dp[i][j] = dp[i + ][j - ];
/* else if (s[i] == '(' || s[i] == '[')
dp[i][j] = min(dp[i][j], dp[i + 1][j])+1;
else if (s[j] == ')' || s[j] == ']')
dp[i][j] = min(dp[i][j], dp[i][j - 1])+1; */
for (int k = i; k < j; k++)
dp[i][j] = min(dp[i][j], dp[i][k]+dp[k+][j]);
}
}
printf("%d\n", dp[][len - ]);
}
return ;
}
下面的UVa 1626 poj 1141就是比上面的题多了个输出结果,这俩题一样,就是输入输出要求有点差别而已。需要特别注意的是,这两道题输入中都有空格,所以只能用gets()函数,我用scanf("%s")WA到死。。。(也没见题中说由空格啊!有空格还对吗?难道空格是在字符串开头?)
其实一看见让输出我是很懵逼的,这怎么输出。能求出最少添加数我就很开心了。下面说说自己的理解,别人的方法是递归输出。既然是递归输出,就先考虑一下边间,显然i>j时直接return.i==j时,是'('或')'输出'()'否则输出'[]',当i!=j时,若i,j两端点正好匹配,那就先输出左端点再递归输出i+1,j-1部分最后输出又端点,若是剩下的其他情况就像上面一样分成两部分判断继续递归。这里分成两部分后应该在哪里分开递归?自然是在更新dp[i][j]=dp[i][k]+dp[k+1][j]的地方,网上有人在dp时添加了另外一个数组记录这个位置,也有人没有添加,而是递归输出结果的时候再判断,我这里选择了第二种,代码看起来简洁些。
自底向上递推:为了方便把端点匹配的情况写成了一个函数。有一个点就是注释里的dp[i][j]==dp[i+1][j-1]不能少,否则会WA!感觉应该是虽然有可能i,j匹配,但这不是原序列中i、j对应的匹配,因为这时候是在递归,所以不加上会WA。估计我比赛的时候不会注意到这种细节。。。。但另开个数组记录就不用考虑了。
UVa 1626
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN=;
int dp[MAXN][MAXN];
char s[MAXN]; bool Judge(int i,int j)
{
if(s[i]=='('&&s[j]==')') return ;
if(s[i]=='['&&s[j]==']') return ;
return ;
} void Print(int i,int j)
{
if(i>j) return;
if(i==j){
if(s[i]=='('||s[j]==')') printf("()");
else printf("[]");
return;
}else if(Judge(i,j)&&dp[i][j]==dp[i+][j-]){//后面的判断条件不能省略
printf("%c",s[i]);
Print(i+,j-);
printf("%c",s[j]);
return;
}else for(int k=i;k<j;k++)
if(dp[i][j]==dp[i][k]+dp[k+][j]){
Print(i,k);
Print(k+,j);
return;
}
} int main()
{
int T;
scanf("%d",&T);
getchar();
while(T--)
{
gets(s);
gets(s);
int len=strlen(s);
memset(dp,,sizeof(dp));
for(int i=;i<len;i++){
dp[i][i]=,dp[i][i-]=;
}
for(int p=;p<len;p++)
{
for(int i=;i+p<len;i++)
{
int j=i+p;
dp[i][j]=1e9;
if(Judge(i,j))
dp[i][j]=dp[i+][j-];
for(int k=i;k<j;k++)
dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+][j]);
}
}
Print(,len-);
printf("\n");
if(T)
printf("\n");
}
return ;
}
附带一个用flag[]数组标记的写法:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN=;
int dp[MAXN][MAXN],flag[MAXN][MAXN];
char s[MAXN]; bool Judge(int i,int j)
{
if(s[i]=='('&&s[j]==')') return ;
if(s[i]=='['&&s[j]==']') return ;
return ;
} void Print(int i,int j)
{
if(i>j) return;
if(i==j){
if(s[i]=='('||s[j]==')') printf("()");
else printf("[]");
return;
}else if(flag[i][j]==-){
printf("%c",s[i]);
Print(i+,j-);
printf("%c",s[j]);
return;
}else {
Print(i,flag[i][j]);
Print(flag[i][j]+,j);
}
} int main()
{
int T;
scanf("%d",&T);
getchar();
while(T--)
{
gets(s);
gets(s);
int len=strlen(s);
memset(dp,,sizeof(dp));
for(int i=;i<len;i++){
dp[i][i]=,dp[i][i-]=;
}
for(int p=;p<len;p++)
{
for(int i=;i+p<len;i++)
{
int j=i+p;
dp[i][j]=1e9;
if(Judge(i,j)){
dp[i][j]=dp[i+][j-];
flag[i][j]=-;
}
for(int k=i;k<j;k++){
if(dp[i][j]>dp[i][k]+dp[k+][j]){
dp[i][j]=dp[i][k]+dp[k+][j];
flag[i][j]=k;
}
}
}
}
Print(,len-);
printf("\n");
if(T)
printf("\n");
}
return ;
}
UVa 1626 用flag[]标记
poj 1141类似:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN = ;
int dp[MAXN][MAXN];
char s[MAXN]; bool Judge(int i, int j)
{
if (s[i] == '('&&s[j] == ')') return true;
if (s[i] == '['&&s[j] == ']') return true;
return false;
} void Print(int l, int r)
{
if (l > r) return;
if (l == r) {
if (s[l] == '(' || s[r] == ')')
printf("()");
else printf("[]");
return;
}
else if (Judge(l, r) && dp[l][r] == dp[l + ][r - ]) {
printf("%c", s[l]);
Print(l + , r - );
printf("%c", s[r]);
}else for(int k=l;k<r;k++)
if (dp[l][r] == dp[l][k] + dp[k + ][r]) {
Print(l, k);
Print(k + , r);
break;
}
} int main()
{
while (gets(s))
{
int len = strlen(s);
memset(dp, , sizeof(dp));
for (int i = ; i < len; i++) {
dp[i][i - ] = , dp[i][i] = ;
}
for (int p = ; p < len; p++)
{
for (int i = ; i < len - p; i++) {
int j = i + p;
dp[i][j] = 1e9;
if ((s[i] == '('&&s[j] == ')') || (s[i] == '['&&s[j] == ']'))
dp[i][j] = dp[i + ][j - ];
for (int k = i; k < j; k++)
dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + ][j]);
}
}
Print(, len - );
printf("\n");
}
return ;
}
自底向上递推poj1141
记忆化搜索也是类似的方法,比递推满了好多倍。。用flag[]数组标记比较好,不标记不知道怎么弄>_<。而且要像上面一样令int ans=1e9,最后再返回dp[i][j]=ans,直接令dp[i][j]=1e9会出错。。。先不深究了,这题写了一天。。。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN = ;
int dp[MAXN][MAXN],flag[MAXN][MAXN];
char s[MAXN]; bool Judge(int i, int j)
{
if (s[i] == '('&&s[j] == ')') return ;
if (s[i] == '['&&s[j] == ']') return ;
return ;
} int dfs(int i, int j)
{
if (dp[i][j] != -) return dp[i][j];
if (i > j) return ;
if (i == j) return ;
int ans = 1e9;
if (Judge(i,j)) {
ans = min(ans, dfs(i + , j - ));
flag[i][j] = -;
}
for (int k = i; k < j; k++) {
if (ans > dfs(i, k) + dfs(k + , j)) {
ans = dfs(i, k) + dfs(k + , j);
flag[i][j] = k;
}
}
return dp[i][j] = ans;
} void Print(int i, int j)
{
if (i>j) return;
if (i == j) {
if (s[i] == '(' || s[j] == ')') printf("()");
else printf("[]");
return;
}
else if (flag[i][j] == -) {
printf("%c", s[i]);
Print(i + , j - );
printf("%c", s[j]);
return;
}
else {
Print(i, flag[i][j]);
Print(flag[i][j] + , j);
}
} int main()
{
int T;
scanf("%d", &T);
getchar();
while (T--)
{
gets(s);
gets(s);
int len = strlen(s);
memset(dp, -, sizeof(dp));
dfs(, len - );
Print(, len - );
printf("\n");
if (T)
printf("\n");
}
return ;
}
记忆化搜索Uva 1626
poj 1141的完全类似。。。
括号序列问题 uva 1626 poj 1141【区间dp】的更多相关文章
- UVA 1626 Brackets sequence 区间DP
题意:给定一个括号序列,将它变成匹配的括号序列,可能多种答案任意输出一组即可.注意:输入可能是空串. 思路:D[i][j]表示区间[i, j]至少需要匹配的括号数,转移方程D[i][j] = min( ...
- [BZOJ 4350]括号序列再战猪猪侠 题解(区间DP)
[BZOJ 4350]括号序列再战猪猪侠 Description 括号序列与猪猪侠又大战了起来. 众所周知,括号序列是一个只有(和)组成的序列,我们称一个括号 序列S合法,当且仅当: 1.( )是一个 ...
- POJ 1141 区间DP
给一组小括号与中括号的序列,加入最少的字符,使该序列变为合法序列,输出该合法序列. dp[a][b]记录a-b区间内的最小值, mark[a][b]记录该区间的最小值怎样得到. #include &q ...
- poj 1141 区间dp+递归打印路径
Brackets Sequence Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 30383 Accepted: 871 ...
- UVA 10003 Cutting Sticks 区间DP+记忆化搜索
UVA 10003 Cutting Sticks+区间DP 纵有疾风起 题目大意 有一个长为L的木棍,木棍中间有n个切点.每次切割的费用为当前木棍的长度.求切割木棍的最小费用 输入输出 第一行是木棍的 ...
- POJ 2955 区间DP Brackets
求一个括号的最大匹配数,这个题可以和UVa 1626比较着看. 注意题目背景一样,但是所求不一样. 回到这道题上来,设d(i, j)表示子序列Si ~ Sj的字符串中最大匹配数,如果Si 与 Sj能配 ...
- POJ 1141 经典DP 轨迹打印
又几天没写博客了,大二的生活实在好忙碌啊,开了五门专业课,每周都是实验啊实验啊实验啊....我说要本月刷够60题,但好像完不成了,也就每天1题的样子.如今写动规还是挺有条理的,包括这道需要打印轨迹,其 ...
- Uva 10891 经典博弈区间DP
经典博弈区间DP 题目链接:https://uva.onlinejudge.org/external/108/p10891.pdf 题意: 给定n个数字,A和B可以从这串数字的两端任意选数字,一次只能 ...
- uva 10003 Cutting Sticks(区间DP)
题目连接:10003 - Cutting Sticks 题目大意:给出一个长l的木棍, 再给出n个要求切割的点,每次切割的代价是当前木棍的长度, 现在要求输出最小代价. 解题思路:区间DP, 每次查找 ...
随机推荐
- Go之路一
一.声明变量 var a int var b string var c []float32 var d func() bool var e struct{ x int } 第1行,声明一个整型类型的变 ...
- YOLO训练自己的数据集的一些心得
YOLO训练自己的数据集 YOLO-darknet训练自己的数据 [Darknet][yolo v2]训练自己数据集的一些心得----VOC格式 YOLO模型训练可视化训练过程中的中间参数 项目开源代 ...
- LUOGU P3539 [POI2012]ROZ-Fibonacci Representation
传送门 解题思路 打了个表发现每次x只会被比x大的第一个fab或比x小的第一个fab表示,就直接写了个爆搜骗分,结果过了.. 代码 #include<iostream> #include& ...
- laravel--request类获取传值
request类获取传值 Request类的方法很多,常用的有如下几个: Request -> all() : 表示一次性获取所有的传值(包括get和post,但不能获取参数) Request ...
- HDU 4584
//也是简单题,因为n太小,故暴力之! #include<stdio.h> #include<math.h> #include<string.h> #define ...
- Linq 之 Where操作
适用场景:实现过滤,查询等功能. 说明:与SQL命令中的Where作用相似,都是起到范围限定也就是过滤作用的,而判断条件就是它后面所接的子句. Where操作包括3种形式,分别为简单形式.关系条件形式 ...
- 中断描述符表 IDT
保护模式下三个重要的系统表——GDT.LDT和IDT 这里主要是解释中断描述符表 中断描述符表IDT将每个异常或中断向量分别与它们的处理过程联系起来.与GDT和LDT表类似,IDT也是由8字节长描述符 ...
- Cesium 1.50重量级新功能测评
概要 既Cesium 1.49中3dtile加载性能大幅提升以后,Cesium 1.50再次迎来几个重量级新功能: 1 地球裁切,这下相当于可以截取一部分地形影像数据,当作一个平面场景来用了! 2 射 ...
- Win7。56个进程让我头疼
乱七八糟的进程一个一个往外蹦,如此痛苦. 安装了一个VM9,进程数量+5,安装了卖咖啡的,进程数量+5. 除去这10个,系统进程数量还有46个....还是太多... 64位系统,真的很痛苦,还没有怎么 ...
- JS中int和string的转换
1.int型转换成string型 (1) var x=100 a = x.toString() (2) var x=100; a = x +"& ...