传送门:抓苹果

dp(i,j) = max(dp(i-1,j-1),dp(i-1,j))+当i这分钟时能否刚好移动到这棵树下.

初始化是对不移动的情况下。

代码

#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define INF 2000000000
#define eps 1e-8
#define pi 3.141592653589793
int dp[][];//第i分钟移动j次得到的最多苹果
int main()
{
int a[];
memset(dp,,sizeof(dp));
int n,m;
scanf("%d %d",&n,&m);
for(int i = ; i <= n ; i ++)scanf("%d",a+i);
for(int i = ; i <= n ; i++) dp[i][] = dp[i-][]+(a[i]==);
//初始化,因为刚开始在1这棵树,按不移动(j==0)推状态
for(int i = ; i <= n ; i ++){
for(int j = ; j <= m ; j++){
dp[i][j]=max(dp[i-][j],dp[i-][j-])+(a[i]==j%+);
//从上个状态的最大值再加上是否站的位置刚好有苹果
// 最初在1这个树下,移动奇数次能到2这棵树,移动偶数次能回到1这棵树
// 所以如果a[i]是j%2+1,即刚好在这棵树下,代表ta能接到苹果
}
}
int ans = ;
for(int i = ; i <= m ; i++){
ans = max(ans,dp[n][i]);
}
printf("%d\n",ans);
}
/*
7 2
2
1
1
2
2
1
1
*/

TOJ4587:抓苹果(DP)的更多相关文章

  1. BZOJ 3384: [Usaco2004 Nov]Apple Catching 接苹果( dp )

    dp dp( x , k ) = max( dp( x - 1 , k - 1 ) + *** , dp( x - 1 , k ) + *** ) *** = 0 or 1 ,根据情况 (BZOJ 1 ...

  2. HDU 5303 Delicious Apples 美味苹果 (DP)

    题意: 给一个长为L的环,起点在12点钟位置,其他位置上有一些苹果,每次带着一个能装k个苹果的篮子从起点出发去摘苹果,要将全部苹果运到起点需要走多少米? 思路: 无论哪处地方,只要苹果数超过k个,那么 ...

  3. poj2385 dp(递推)

    题目链接 :http://bak3.vjudge.net/contest/136499#problem/D 题意: //转移方程dp[i][j]=max(dp[i-1][j],dp[i-1][j-1] ...

  4. POJ2486 Apple Tree(树形DP)

    题目大概是一棵树,每个结点都有若干个苹果,求从结点1出发最多走k步最多能得到多少个苹果. 考虑到结点可以重复走,容易想到这么个状态: dp[u][k][0]表示在以结点u为根的子树中走k步且必须返回u ...

  5. Luogu P2690 接苹果

    题目背景 USACO 题目描述 很少有人知道奶牛爱吃苹果.农夫约翰的农场上有两棵苹果树(编号为1和2), 每一棵树上都长满了苹果.奶牛贝茜无法摘下树上的苹果,所以她只能等待苹果 从树上落下.但是,由于 ...

  6. m个苹果放入n个篮子

    题目 :X个相同的苹果放入Y个篮子,(1)篮子可以为空 ,篮子不同. 放法有C(X+Y-1,Y-1 );// (2)篮子不可以为空,篮子不同.放法有C(X-1,Y-1) //插挡板法 分析有了这个组合 ...

  7. POJ1664 计数 DP

      题目传送门 http://poj.org/problem?id=1664 设$dp[i][j]$表示$i$个苹果放在$j$个盘子里的总数 $1.$ 当 苹果数 小于 盘子数 $(M < N) ...

  8. [POJ1664]放苹果(动态规划)

    [POJ1664]放苹果 Description 把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法. Input 第 ...

  9. Amazon后台模拟登陆

    本文基于python3.4的selenium库打开浏览器,并将浏览器中的登陆cookie保存到本地,那么下次登陆就可以直接利用cookie了: # !/usr/bin/python3.4 # -*- ...

随机推荐

  1. json,pickle模块

    序列化 把对象从内存中编成可储存或传输的过程称之为序列化,输出为json串,.json文件 反序列化 把json串反编成Python数据类型 json模块 用于跨平台交互 json模块下不可转换集合( ...

  2. 使用 docker-compose 安装 MySQL 5.5 记录

    使用 docker-compose 安装 MySQL 5.5 记录 安装 Docker-Compose 在 Centos 中安装 Docker 倒是很简单. 但是安装 docker-compose 遇 ...

  3. iOS 后台定位

    http://www.cocoachina.com/ios/20150724/12735.html 前言 之前的文章说过 我现在做的是LBS定位的社交APP 其中主要的一个功能就是能够实时定位社交圈中 ...

  4. 日志 5.27 关于AssetBundle

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/zxsean/article/details/27228783 大概日志就这么写的吧.没什么太专业的东 ...

  5. plt.figure()的使用

    版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/m0_37362454/article/d ...

  6. 云数据库 MySQL 8.0 重磅发布,更适合企业使用场景的RDS数据库

    点击订阅新品发布会! 新产品.新版本.新技术.新功能.价格调整,评论在下方,下期更新!关注更多内容,了解更多 最新发布 云数据库MySQL 8.0 升级发布会 2019年5月29日15时,阿里云云数据 ...

  7. codeforces2B.The least round way 题解 动态规划/模拟

    题目出处:http://codeforces.com/problemset/problem/2/B 题目描述 给你一个 \(n \times n\) 的二维数组,它包含的元素都是非负整数.你需要寻找一 ...

  8. H3C 网络号和主机号

  9. Educational Codeforces Round 12 B C题、

    B. Shopping 题意:n个顾客,每个顾客要买m个物品,商场总共有k个物品,看hint就只知道pos(x)怎么算了,对于每一个Aij在k个物品中找到Aij的位置.然后加上这个位置对于的数值,然后 ...

  10. CondaHTTPError: HTTP 000 CONNECTION FAILED

    [root@localhost ~]# conda install samtools Solving environment: failed CondaHTTPError: HTTP 000 CONN ...