poj 1039 Pipe (Geometry)
理解错题意一个晚上。_(:з」∠)_
题意很容易看懂,就是要求你求出从外面射进一根管子的射线,最远可以射到哪里。
正解的做法是,选择上点和下点各一个,然后对于每个折点位置竖直位置判断经过的点是否在管中。如果是,就继续找,如果不在管中,这时射线必然已经穿过管出去了,这时就要找射线和管上下壁的交点。
代码如下:
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <vector>
#include <cmath> using namespace std; const double EPS = 1e-;
const int N = ;
inline int sgn(double x) { return (x > EPS) - (x < -EPS);}
struct Point {
double x, y;
Point() {}
Point(double x, double y) : x(x), y(y) {}
bool operator < (Point a) const { return sgn(x - a.x) < || sgn(x - a.x) == && y < a.y;}
bool operator == (Point a) const { return sgn(x - a.x) == && sgn(y - a.y) == ;}
Point operator + (Point a) { return Point(x + a.x, y + a.y);}
Point operator - (Point a) { return Point(x - a.x, y - a.y);}
Point operator * (double p) { return Point(x * p, y * p);}
Point operator / (double p) { return Point(x / p, y / p);}
} ;
typedef Point Vec;
inline double dot(Vec a, Vec b) { return a.x * b.x + a.y * b.y;}
inline double cross(Vec a, Vec b) { return a.x * b.y - a.y * b.x;}
inline double veclen(Vec x) { return sqrt(dot(x, x));}
inline Point vecunit(Vec x) { return x / veclen(x);}
inline Point normal(Vec x) { return Point(-x.y, x.x) / veclen(x);} struct Line {
Point s, t;
Line() {}
Line(Point s, Point t) : s(s), t(t) {}
Vec vec() { return t - s;}
Point point(double p) { return s + vec() * p;}
} ; Point up[N], dw[N];
Line ul[N], dl[N]; inline Point llint(Point P, Vec u, Point Q, Vec v) { return P + u * (cross(v, P - Q) / cross(u, v));}
bool tstcross(Point a, Point b, Point c, Point d) { return sgn(cross(a - c, b - c)) * sgn(cross(a - d, b - d)) > ;} double cal(Point s, Point t, int n) {
Line tl = Line(s, t);
if (tstcross(tl.s, tl.t, up[], dw[])) return -1e100;
for (int i = ; i < n - ; i++) {
if (tstcross(tl.s, tl.t, up[i + ], dw[i + ])) {
double ret = -1e100;
if (!tstcross(tl.s, tl.t, ul[i].s, ul[i].t)) {
Point tp = llint(tl.s, tl.vec(), ul[i].s, ul[i].vec());
ret = max(ret, tp.x);
}
if (!tstcross(tl.s, tl.t, dl[i].s, dl[i].t)) {
Point tp = llint(tl.s, tl.vec(), dl[i].s, dl[i].vec());
ret = max(ret, tp.x);
}
return ret;
}
}
return 1e100;
} void work(int n) {
for (int i = ; i < n - ; i++) {
ul[i] = Line(up[i], up[i + ]);
dl[i] = Line(dw[i], dw[i + ]);
}
double ans = -1e100;
for (int i = ; i < n; i++) {
for (int j = i + ; j < n; j++) {
if (ans >= 1e99) break;
ans = max(ans, cal(up[i], dw[j], n));
ans = max(ans, cal(dw[i], up[j], n));
}
}
if (ans >= 1e99) puts("Through all the pipe.");
else printf("%.2f\n", ans);
} int main() {
// freopen("in", "r", stdin);
int n;
while (~scanf("%d", &n) && n) {
for (int i = ; i < n; i++) {
scanf("%lf%lf", &up[i].x, &up[i].y);
dw[i] = Point(up[i].x, up[i].y - 1.0);
}
work(n);
}
return ;
}
——written by Lyon
poj 1039 Pipe (Geometry)的更多相关文章
- poj 1039 Pipe(叉乘。。。)
题目:http://poj.org/problem?id=1039 题意:有一宽度为1的折线管道,上面顶点为(xi,yi),所对应的下面顶点为(xi,yi-1),假设管道都是不透明的,不反射的,光线从 ...
- POJ - 1039 Pipe(计算几何)
http://poj.org/problem?id=1039 题意 有一宽度为1的折线管道,上面顶点为(xi,yi),所对应的下面顶点为(xi,yi-1),假设管道都是不透明的,不反射的,光线从左边入 ...
- POJ 1039 Pipe【经典线段与直线相交】
链接: http://poj.org/problem?id=1039 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...
- 简单几何(直线与线段相交) POJ 1039 Pipe
题目传送门 题意:一根管道,有光源从入口发射,问光源最远到达的地方. 分析:黑书上的例题,解法是枚举任意的一个上顶点和一个下顶点(优化后),组成直线,如果直线与所有竖直线段有交点,则表示能穿过管道. ...
- POJ 1039 Pipe(直线和线段相交判断,求交点)
Pipe Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 8280 Accepted: 2483 Description ...
- POJ 1039 Pipe
题意:一根管子,中间有一些拐点,给出拐点的上坐标,下坐标为上坐标的纵坐标减1,管子不能透过光线也不能折射光线,问光线能射到最远的点的横坐标. 解法:光线射到最远处的时候一定最少经过两个拐点,枚举每两个 ...
- poj 1039 Pipe(几何基础)
Pipe Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9932 Accepted: 3045 Description ...
- POJ 1039 Pipe 枚举线段相交
Pipe Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9493 Accepted: 2877 Description ...
- POJ 1039 Pipe | 线段相交
题目: 给一个管子,有很多转弯处,问从管口的射线射进去最长能射到多远 题解: 根据黑书,可以证明的是这条光线一定经过了一个上顶点和下顶点 所以我们枚举每对上下顶点就可以了 #include<cs ...
随机推荐
- Struts_添加客户练习
1.修改CustomerAction,实现ModelDriven接口 2.修改配置文件 3.修改表单提交地址
- 如何制作可以在 MaxCompute 上使用的 crcmod
之前我们介绍过在 PyODPS DataFrame 中使用三方包.对于二进制包而言,MaxCompute 要求使用包名包含 cp27-cp27m 的 Wheel 包.但对于部分长时间未更新的包,例如 ...
- (转)Cookie存中文乱码的问题
有个奇怪的问题:登录页面中使用Cookie存值,Cookie中要存中文汉字.代码在本地调试,一切OK,汉字也能顺利存到Cookie和从Cookie中读出,但是放到服务器上不管用了,好好的汉字成了乱码, ...
- 【笔记】LR配置ODBC连接数据库进行参数化(mysql )未完待续
很多时候我们需要大量的参数数据,但是光光靠手填写是非常麻烦的,既然被测对象的数据都在数据库,那么我们直接读取数据库回来就轻松简便很多. data wizard 提供了一个从ODBC的连接获得数据转化 ...
- 图文结合深入理解 JS 中的 this 值
图文结合深入理解 JS 中的 this 值 在 JS 中最常见的莫过于函数了,在函数(方法)中 this 的出现频率特别高,那么 this 到底是什么呢,今天就和大家一起学习总结一下 JS 中的 th ...
- arcgis点密度专题
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...
- 【JZOJ5071】【GDSOI2017第二轮模拟】奶酪 树形dp
题面 CJY很喜欢吃奶酪,于是YJC弄到了一些奶酪,现在YJC决定和CJY分享奶酪. YJC弄到了n-1块奶酪,于是他把奶酪挂在了一棵n个结点的树上,每根树枝上挂一块奶酪,每块奶酪都有重量. YJC和 ...
- WEB性能测试用例设计
性能测试用例主要分为预期目标用户测试,用户并发测试,疲劳强度与大数据量测试,网络性能测试,服务器性能测试五大部分,具体编写测试用例时要根据实际情况进行裁减,在项目应用中遵守低成本,策略为中心,裁减,完 ...
- vue 数组遍历方法forEach和map的原理解析和实际应用
一.前言 forEach和map是数组的两个方法,作用都是遍历数组.在vue项目的处理数据中经常会用到,这里介绍一下两者的区别和具体用法示例. 二.代码 1. 相同点 都是数组的方法 都用来遍历数组 ...
- em grid control网格控制
网格控制 必须管理许多的数据库.应用服务器.web服务器和其他构件的企业可以采用em grid control Em grid control是一个基于web的用户界面,它与oracle企业内所有构件 ...