API - 强化学习

强化学习(增强学习)相关函数。

discount_episode_rewards([rewards, gamma, mode]) Take 1D float array of rewards and compute discounted rewards for an episode.
cross_entropy_reward_loss(logits, actions, ...) Calculate the loss for Policy Gradient Network.
log_weight(probs, weights[, name]) Log weight.
choice_action_by_probs([probs, action_list]) Choice and return an an action by given the action probability distribution.

奖励函数

tensorlayer.rein.discount_episode_rewards(rewards=[], gamma=0.99, mode=0)[源代码]

Take 1D float array of rewards and compute discounted rewards for an
episode. When encount a non-zero value, consider as the end a of an episode.

Parameters:

rewards : numpy list

a list of rewards

gamma : float

discounted factor

mode : int

if mode == 0, reset the discount process when encount a non-zero reward (Ping-pong game).
if mode == 1, would not reset the discount process.

Examples

>>> rewards = np.asarray([0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1])
>>> gamma = 0.9
>>> discount_rewards = tl.rein.discount_episode_rewards(rewards, gamma)
>>> print(discount_rewards)
... [ 0.72899997 0.81 0.89999998 1. 0.72899997 0.81
... 0.89999998 1. 0.72899997 0.81 0.89999998 1. ]
>>> discount_rewards = tl.rein.discount_episode_rewards(rewards, gamma, mode=1)
>>> print(discount_rewards)
... [ 1.52110755 1.69011939 1.87791049 2.08656716 1.20729685 1.34144104
... 1.49048996 1.65610003 0.72899997 0.81 0.89999998 1. ]

损失函数

Weighted Cross Entropy

tensorlayer.rein.cross_entropy_reward_loss(logits, actions, rewards, name=None)[源代码]

Calculate the loss for Policy Gradient Network.

Parameters:

logits : tensor

The network outputs without softmax. This function implements softmax
inside.

actions : tensor/ placeholder

The agent actions.

rewards : tensor/ placeholder

The rewards.

Examples

>>> states_batch_pl = tf.placeholder(tf.float32, shape=[None, D])
>>> network = InputLayer(states_batch_pl, name='input')
>>> network = DenseLayer(network, n_units=H, act=tf.nn.relu, name='relu1')
>>> network = DenseLayer(network, n_units=3, name='out')
>>> probs = network.outputs
>>> sampling_prob = tf.nn.softmax(probs)
>>> actions_batch_pl = tf.placeholder(tf.int32, shape=[None])
>>> discount_rewards_batch_pl = tf.placeholder(tf.float32, shape=[None])
>>> loss = tl.rein.cross_entropy_reward_loss(probs, actions_batch_pl, discount_rewards_batch_pl)
>>> train_op = tf.train.RMSPropOptimizer(learning_rate, decay_rate).minimize(loss)

Log weight

tensorlayer.rein.log_weight(probs, weights, name='log_weight')[源代码]

Log weight.

Parameters:

probs : tensor

If it is a network output, usually we should scale it to [0, 1] via softmax.

weights : tensor

采样选择函数

tensorlayer.rein.choice_action_by_probs(probs=[0.5, 0.5], action_list=None)[源代码]

Choice and return an an action by given the action probability distribution.

Parameters:

probs : a list of float.

The probability distribution of all actions.

action_list : None or a list of action in integer, string or others.

If None, returns an integer range between 0 and len(probs)-1.

Examples

>>> for _ in range(5):
>>> a = choice_action_by_probs([0.2, 0.4, 0.4])
>>> print(a)
... 0
... 1
... 1
... 2
... 1
>>> for _ in range(3):
>>> a = choice_action_by_probs([0.5, 0.5], ['a', 'b'])
>>> print(a)
... a
... b
... b

艾伯特(http://www.aibbt.com/)国内第一家人工智能门户

TensorLayer官方中文文档1.7.4:API – 强化学习的更多相关文章

  1. TensorLayer官方中文文档1.7.4:API – 数据预处理

    所属分类:TensorLayer API - 数据预处理¶ 我们提供大量的数据增强及处理方法,使用 Numpy, Scipy, Threading 和 Queue. 不过,我们建议你直接使用 Tens ...

  2. TensorLayer官方中文文档1.7.4:API – 可视化

    API - 可视化¶ TensorFlow 提供了可视化模型和激活输出等的工具 TensorBoard. 在这里,我们进一步提供一些可视化模型参数和数据的函数. read_image(image[,  ...

  3. Keras官方中文文档:函数式模型API

    \ 函数式模型接口 为什么叫"函数式模型",请查看"Keras新手指南"的相关部分 Keras的函数式模型为Model,即广义的拥有输入和输出的模型,我们使用M ...

  4. ReactNative官方中文文档0.21

    整理了一份ReactNative0.21中文文档,提供给需要的reactnative爱好者.ReactNative0.21中文文档.chm  百度盘下载:ReactNative0.21中文文档 来源: ...

  5. PyTorch官方中文文档:torch.nn

    torch.nn Parameters class torch.nn.Parameter() 艾伯特(http://www.aibbt.com/)国内第一家人工智能门户,微信公众号:aibbtcom ...

  6. 学习Python 新去处:Python 官方中文文档

    Python 作为世界上最好用的语言,官方支持的文档一直没有中文.小伙伴们已经习惯了原汁原味的英文文档,但如果有官方中文文档,那么查阅或理解速度都会大大提升.本文将介绍隐藏在 Python 官网的中文 ...

  7. django2.0 官方中文文档地址

    django2.0 官方开始发布中文文档了,之前还想着一直翻译完成所有有必要的内容,想着可以省事一些了,打开以后看了一下,发现官方的中文文档还没翻译完成, 现在(2018-7-10)最新章节是是  编 ...

  8. mysql 新手入门 官方文档+官方中文文档附地址

    点评: 官方文档地址 官方中文文档地址 sql语句扩展

  9. PyTorch官方中文文档:torch.optim 优化器参数

    内容预览: step(closure) 进行单次优化 (参数更新). 参数: closure (callable) –...~ 参数: params (iterable) – 待优化参数的iterab ...

随机推荐

  1. express respond.send 和 end的区别

    做个记录 res.send() will send the HTTP response. Its syntax is, res.send([body]) The body parameter can ...

  2. 一个.net专业户转Spring Boot V2.0开发的体会

    java web的idea开发工具总体用起来还是比vs差很多,但是在使用Hibernate跟MyBatis的感触,Hibernate有着.net core ef没有的细腻,Hibernate在细节上完 ...

  3. iOS 开发 atomic 与 nonatomic 区别

    atomic :  变量默认是有该有属性的,这个属性是为了保证在多线程的情况下,编译器会自动生成一些互斥加锁的代码,避免该变量的读写不同步的问题. nonatomic  : 如果该对象无需考虑多线程的 ...

  4. 市面上有没有靠谱的PM2.5检测仪?如何自己动手制作PM2.5检测仪

     市面上能买到的11中常见的pm2.5检测仪 网上大佬实测并不是很准,我这里没测过(全买下来有点贵,贫穷限制了我的想象力) 这些检测仪多数是复合式.多功能的空气质量检测仪.具体就不一一介绍了.这篇文章 ...

  5. spring core 与 context理解

    Spring core是核心层,拥有这BeanFactory这个强大的工厂,是所有bean的管理器: 而spring context是上下文运行环境,基于spring core之上的一个架构, 它之上 ...

  6. mysql存储引擎、事务

    MySQL存储引擎介绍 文件系统 操作系统组织和存取数据的一种机制. 文件系统是一种软件. 文件系统类型 ext2  ext3  ext4  xfs 数据 不管使用什么文件系统,数据内容不会变化 不同 ...

  7. yii2自带的backend,frontend不够用,添加一个后台模块怎么做?

    在复杂项目里,高级模板中的fontend.backend application明显不够,可以再添加另外的application. 例如添加一个seller application .步骤如下: 1, ...

  8. PHP调用外部命令

    ------------------------------------------------------------------ 一.PHP调用外部命令总结                     ...

  9. python+flask:实现POST接口功能

    1.首先需要安装python和flask,这个是必须的嘛. 2.我们这里实现的是一个POST功能的简单接口. from flask import Flask, request, jsonify imp ...

  10. 用一个简单的例子比较SVM,MARS以及BRUTO(R语言)

    背景重述 本文是ESL: 12.3 支持向量机和核中表12.2的重现过程.具体问题如下: 在两个类别中产生100个观测值.第一类有4个标准正态独立特征\(X_1,X_2,X_3,X_4\).第二类也有 ...