[SDOI2012]Longge的问题
题目大意:
网址:https://www.luogu.org/problemnew/show/P2303
大意:给定一个N,求\(\Sigma_{i=1}^N gcd(i, N);\)。
题目解法:
首先\(gcd(i,N)\)肯定为\(N\)的一个因子,也就是说\(gcd(i,N)\)的取值其实不多。
那么对于每一个结果分开考虑:
\(N\)唯一分解后:\(N = a_1^{k_1} \times a_2^{k_2} \times a_3^{k_3} ...\)
那么考虑一下当 \(gcd(T,N) = a\) 的时候:有\(T = R \times a\),并且\(gcd(\frac{N}{a},R) == 1\)
那么满足条件的\(R\)的个数为\(Φ(\frac{N}{a})\)个。(欧拉函数\(phi\)的定义)。
所以当 \(gcd(i,N)=a\) 时,总贡献为 \(a\timesΦ(\frac{N}{a})\)
所以我们的答案\(Ans = \Sigma_{i=1}^N([ d|N ]\times d\times Φ(\frac{N}{d}));\)
分析一下复杂度:枚举因子是\(O(\sqrt{N})\)的,求解因子的\(phi\)也是\(O(\sqrt{N})\)的。
所以理论时间复杂度为\(O(N)\),但是非常的不满(因子肯定没有\(\sqrt{N}\)个)。空间复杂度为\(O(1)\)。
具体实现代码:
#include<bits/stdc++.h>
#define ll long long
#define gi(x) scanf("%lld",&x)
using namespace std;
ll n,m,phi,Ans;
ll Eule(ll x){
phi = x;
for(ll e = 2;e <= sqrt(x); e ++){
if(x%e)continue;
while(!(x%e))x = x/e;
phi = phi/e*(e-1);
}
if(x != 1)phi = phi/x*(x-1);
return phi;
}
int main(){
gi(n); m = sqrt(n);
for(ll i = 1; i*i < n; i ++)
if(!(n%i))Ans += i*Eule(n/i) + (n/i)*Eule(i);
if(m*m==n)Ans += m*Eule(m);
cout<<Ans; return 0;
}
[SDOI2012]Longge的问题的更多相关文章
- BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2553 Solved: 1565[Submit][ ...
- BZOJ 2705: [SDOI2012]Longge的问题
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2554 Solved: 1566[Submit][ ...
- BZOJ 2705: [SDOI2012]Longge的问题 GCD
2705: [SDOI2012]Longge的问题 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnl ...
- bzoj 2705: [SDOI2012]Longge的问题 歐拉函數
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 1035 Solved: 669[Submit][S ...
- Bzoj 2705: [SDOI2012]Longge的问题 欧拉函数,数论
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 1959 Solved: 1229[Submit][ ...
- BZOJ 2705: [SDOI2012]Longge的问题( 数论 )
T了一版....是因为我找质因数的姿势不对... 考虑n的每个因数对答案的贡献. 答案就是 ∑ d * phi(n / d) (d | n) 直接枚举n的因数然后求phi就行了. 但是我们可以做的更好 ...
- 洛谷 P2303 [SDOi2012]Longge的问题 解题报告
P2303 [SDOi2012]Longge的问题 题目背景 SDOi2012 题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数\(N\),你需要 ...
- BZOJ2705 SDOI2012 Longge的问题 【欧拉函数】
BZOJ2705 SDOI2012 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, ...
- 【bzoj2705】[SDOI2012]Longge的问题
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2507 Solved: 1531[Submit][ ...
- [SDOi2012]Longge的问题 (数论)
Luogu2303 [SDOi2012]Longge的问题 题目 题目背景 SDOi2012 题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N, ...
随机推荐
- 6.C++初步分析类
面向对象的意义在于: -将日常生活中习惯的思维方式引入程序设计中 -将需求中的慨念直观的映射到解决方案中 -以模块为中心构建可复用的软件系统 -提高软件产品的可维护性和可扩展性 其中类和对象是面向对象 ...
- install atom markdown preview plus error
Installing "markdown-preview-enhanced@0.15.2" failed.Hide output- npm ERR! Darwin 17.2.0 n ...
- 04-PHP-redis
[Redis] 先安装tcl: yum install tcl [下载和安装] 官网http://redis.io/ 下载最新的稳定版本,这里是3.2.0, 然后解压文件并进入. $ sudo ...
- MySQL创建用户与授权
一. 创建用户 命令: CREATE USER 'username'@'host' IDENTIFIED BY 'password'; 说明: username:你将创建的用户名 host:指定该用户 ...
- Treap-平衡树学习笔记
平衡树-Treap学习笔记 最近刚学了Treap 发现这种数据结构真的是--妙啊妙啊~~ 咳咳.... 所以发一发博客,也是为了加深蒟蒻自己的理解 顺便帮助一下各位小伙伴们 切入正题 Treap的结构 ...
- object类的equals方法简介 & String类重写equals方法
object类中equals方法源码如下所示 public boolean equals(Object obj) { return this == obj; } Object中的equals方法是直接 ...
- JavaScript 历史漫谈
话说 JavaScript 其实是诞生在一个特殊的时期,20世纪90年代,正值第三次科技革命时期,互联网刚开始进入人们的生活.设想一下,在网速只有几十比特的那个时代,在登录注册时要花上很长一段时间等待 ...
- 菜鸟之旅——.NET垃圾回收机制
.NET的垃圾回收机制是一个非常强大的功能,尽管我们很少主动使用,但它一直在默默的在后台运行,我们仍需要意识到它的存在,了解它,做出更高效的.NET应用程序:下面我分享一下我对于垃圾回收机制(GC)的 ...
- bzoj 2288 【POJ Challenge】生日礼物 双向链表+堆优化
2288: [POJ Challenge]生日礼物 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1003 Solved: 317[Submit][ ...
- Sping Boot入门到实战之入门篇(三):Spring Boot属性配置
该篇为Sping Boot入门到实战系列入门篇的第三篇.介绍Spring Boot的属性配置. 传统的Spring Web应用自定义属性一般是通过添加一个demo.properties配置文件(文 ...