笔记:Spring Cloud Ribbon 客户端配置详解
自动化配置
由于 Ribbon 中定义的每一个接口都有多种不同的策略实现,同时这些接口之间又有一定的依赖关系,Spring Cloud Ribbon 中的自动化配置能够很方便的自动化构建接口的具体实现,接口如下:
- IClientConfig:Ribbon 的客户端配置,默认采用 com.netflix.client.config.DefaultClientConfigImpl 实现。
- IRule:Ribbon 的负载均衡策略,默认采用 com.netflix.loadbalancer.ZoneAvoidanceRule 实现,该策略能够在多区域环境下选择最佳区域的实例进行访问
- IPing:Ribbon 的实例检查策略,默认采用 com.netflix.loadbalancer.NoOpPing 实现,该检查策略是一个特殊的实现,实际上他并不会检查实例是否可用,而是始终返回 true ,默认认为所有服务实例都是可以使用
- ServerList<Server>:服务实例清单的维护机制,默认采用 com.netflix.loadbalancer.ConfigurationBasedServerList 实现。
- ServerListFilter<Server>:服务实例清单过滤机制,默认采用 org.springframework.cloud.netflix.ribbon.ZonePreferenceServerListFilter 实现,该策略能够优先过滤出与请求调用方处理同区域的服务实现
- ILoadBalancer:负载均衡器,默认采用 com.netflix.loadbalancer.ZoneAwareLoadBalancer 实现,他具备了区域感知的能力
这些自动化配置内容是在没有引入
Spring
Cloud
Eureka
等服务治理框架时如此,在同时引入
Eureka
和
Ribbon
依赖时,自动化配置会有一些不同。通过自动化配置的实现,我们可以轻松的实现客户端的负载均衡,同时,针对一些个性化的需求,我们也可以方便的替换上面的这些默认实现,示例代码:
@Configurable
public class RibbonConfiguration {
@Bean
public IRule ribbonRule(IClientConfig clientConfig) {
return new
WeightedResponseTimeRule();
}
}
可以使用 @RibbonClient
注解来实现更细粒度的客户端配置,创建 ConsumerHelloserviceApplication 主类,使用 @RibbonClient 注解来指定服务使用 WebServiceRibbonConfiguration 配置,代码如下:
@RibbonClient (name = "ORG.DRSOFT.WEBSERVICE.HELLOSERVICE", configuration = RibbonConfiguration.class)
@EnableDiscoveryClient
@SpringBootApplication
public class ConsumerHelloserviceApplication {
public static
void
main(String[] args) {
SpringApplication.run(ConsumerHelloserviceApplication.class, args);
}
@LoadBalanced
@Bean
public RestTemplate createRestTemplate() {
return new
RestTemplate();
}
}
注意:如果需要使服务单独配置,那么配置类不能放在@ComponentScan所扫描的当前包下以及子包下,否则我们自定义的这个配置类就会被所有的Ribbon客户端所共享,@SpringBootApplication 注解中就包含了 @ComponentScan 注解,因此必须使配置类处于不同的包以及子包。
如果需要设置默认配置或者多个@RibbonClient
注解,可以使用 @RibbonClients 注解,其 defaultConfiguration
可以设置默认的自定义配置,配置类不限定所属包,value
可以设置多个 @RibbonClient 注解,示例代码如下:
@RibbonClients (defaultConfiguration = RibbonConfiguration.class)
@EnableDiscoveryClient
@SpringBootApplication
public class ConsumerHelloserviceApplication {
public static
void
main(String[] args) {
SpringApplication.run(ConsumerHelloserviceApplication.class, args);
}
@Bean
@LoadBalanced
public RestTemplate restTemplate() {
return new
RestTemplate();
}
}
与
Eureka
结合
当在
Spring
Cloud
的应用中同时应用
Spring
Cloud Ribbon 和 Spring Cloud Eureka 依赖时,会触发 Eureka 中实现的对 Ribbon 的自动化配置,接口实现如下:
- ServerList<Server>:服务实例清单的维护机制,默认采用 com.netflix.niws.loadbalancer.DiscoveryEnabledNIWSServerList实现,该实现会将服务清单列表交给 Eureka 的服务治理机制来进行维护
- IPing:Ribbon 的实例检查策略,默认采用 com.netflix.niws.loadbalancer.NIWSDiscoveryPing 实现,该实现将实例检查的任务交给了服务治理框架来进行维护
负载均衡策略
IRule
接口其Ribbon
实现了非常多的选择策略,下面我们来详细说明一下IRule 接口的定义如下:
public interface IRule{
public Server choose(Object key);
public
void
setLoadBalancer(ILoadBalancer lb);
public ILoadBalancer getLoadBalancer();
}
IRule
接口的具体实现:
- AbstractLoadBalancerRule:负载均衡策略的抽象类,在该抽象类中定义了负载均衡器 ILoadBalancer 对象,该对象能够根据在具体实现选择服务策略时,获取到一些负载均衡器中维护的信息来作为分配依据,并以此设计一些算法来实习针对特定场景的高效策略
- RandomRule:该策略实现了从服务实例清单中随机选择一个服务实例的功能,查看源码可以看到 choose 函数实现,使用 Random类的 nextInt 函数来随机获取一个随机数,并将随机数作为座位 upList 的索引值来返回具体实例
public Server choose(ILoadBalancer lb, Object key) {
if (lb == null) {
return null;
}
Server server = null;
while (server == null) {
if (Thread.interrupted()) {
return null;
}
List<Server> upList = lb.getReachableServers();
List<Server> allList = lb.getAllServers();
int serverCount = allList.size();
if (serverCount == 0) {
return null;
}
int index = rand.nextInt(serverCount);
server = upList.get(index);
if (server == null) {
Thread.yield();
continue;
}
if (server.isAlive()) {
return (server);
}
server = null;
Thread.yield();
}
return server;
}
- RoundRobinRule:该策略实现了按照线性轮询的方式依次选择每个服务实例的功能,其详细结构和
RandomRule类似,具体实现如下:public Server choose(ILoadBalancer lb, Object key) {
if (lb == null) {
log.warn("no load balancer");
return null;
}
Server server = null;
int count = 0;
while (server == null && count++ < 10) {
List<Server> reachableServers = lb.getReachableServers();
List<Server> allServers = lb.getAllServers();
int upCount = reachableServers.size();
int serverCount = allServers.size();
if ((upCount == 0) || (serverCount == 0)) {
log.warn("No up servers available from load balancer: " + lb);
return null;
}
int nextServerIndex = incrementAndGetModulo(serverCount);
server = allServers.get(nextServerIndex);
if (server == null) {
/* Transient. */
Thread.yield();
continue;
}
if (server.isAlive() && (server.isReadyToServe())) {
return (server);
}
// Next.
server = null;
}
if (count >= 10) {
log.warn("No available alive servers after 10 tries from load balancer: " + lb);
}
return server;
}
- WeightedResponseTimeRule:该策略是对
RoundRobinRule的扩展,增加了根据实例的运行情况来计算权重,并根据权重来挑选实例,以达到更优的分配效果,实现主要有三个核心内容:- 定时任务:在初始化的时候会通过 serverWeightTimer.schedule(new DynamicServerWeightTask(), 0, serverWeightTaskTimerInterval); 启动一个定时任务,用来为每个服务实例计算权重,该任务默认30秒执行一次。
- 权重计算:维护实例的权重计算过程通过
maintainWeights 函数实现,具体代码如下:public
void
maintainWeights() {
ILoadBalancer lb = getLoadBalancer();
if (lb == null) {
return;
}
if (!serverWeightAssignmentInProgress.compareAndSet(false, true)) {
return;
}
try {
logger.info("Weight adjusting job started");
AbstractLoadBalancer nlb = (AbstractLoadBalancer) lb;
LoadBalancerStats stats = nlb.getLoadBalancerStats();
if (stats == null) {
return;
}
double totalResponseTime = 0;
for (Server server : nlb.getAllServers()) {
ServerStats ss = stats.getSingleServerStat(server);
totalResponseTime += ss.getResponseTimeAvg();
}
Double weightSoFar = 0.0;
List<Double> finalWeights = new ArrayList<Double>();
for (Server server : nlb.getAllServers()) {
ServerStats ss = stats.getSingleServerStat(server);
double weight = totalResponseTime - ss.getResponseTimeAvg();
weightSoFar += weight;
finalWeights.add(weightSoFar);
}
setWeights(finalWeights);
} catch (Exception e) {
logger.error("Error calculating server weights", e);
} finally {
serverWeightAssignmentInProgress.set(false);
}
}
计算规则为
weightSoFar + totalResponseTime - 实例的平均响应时间,其中
weightSoFar
初始化为零,并且每计算好一个权重值需要累加到
weightSoFar
上供下一次计算使用,假设有4个实例A、B、C、D,他们的平均响应时间为10、40、80、100,所以总响应时间是 230,每个实例的权重为总响应时间与实例自身的平均响应时间的差的累积所得,所以A、B、C、D的权重分别如下所示:- 实例A:230-10=220
- 实例B:220+(230-40)=410
- 实例C:410+(230-80)=560
- 实例D:560+(230-100)=690
需要注意的是,这里的权重值只表示各实例权重区间的上限,每个实例的权重区间如下:
- 实例A:[0,220]
- 实例B:[220,410]
- 实例C:[410,560]
- 实例D:[560,690]
权重区间的宽度越大,而权重区间的宽度越大,被选中的概率越高
- 实例选择:生成一个[0,最大权重值]区间内的随机数,然后遍历权重列表的索引值去服务实例列表中获取具体的实例。
- ClientConfigEnabledRoundRobinRule:该策略比较特殊,他本身并没有实现什么特殊的处理策略逻辑,在内部定义了一个RoundRobinRule 策略,我们不会直接使用该策略,但可以通过继承该策略,默认的choose实现了线性轮询策略,在子类中做一些高级策略时通常有可能存在一些无法实施的情况,那么就可以用父类的实现作为备选,后面的高级策略都是基于该类的扩展
- BestAvailableRule:该策略继承自
ClientConfigEnabledRoundRobinRule
,在实现中他注入了负载均衡器的统计对象
LoadBalancerStats,同时在具体的
choose
方法中利用
LoadBalancerStats
保存的实例统计信息来选择满足要求的实例,通过负载均衡器中维护的所有服务实例,会过滤掉故障的实例,并找出并发请求最小的一个,所以该策略的特性是可选出最空闲的实例,代码如下:public Server choose(Object key) {
if (loadBalancerStats == null) {
return super.choose(key);
}
List<Server> serverList = getLoadBalancer().getAllServers();
int minimalConcurrentConnections = Integer.MAX_VALUE;
long currentTime = System.currentTimeMillis();
Server chosen = null;
for (Server server: serverList) {
ServerStats serverStats = loadBalancerStats.getSingleServerStat(server);
if (!serverStats.isCircuitBreakerTripped(currentTime)) {
int concurrentConnections = serverStats.getActiveRequestsCount(currentTime);
if (concurrentConnections < minimalConcurrentConnections) {
minimalConcurrentConnections = concurrentConnections;
chosen = server;
}
}
}
if (chosen == null) {
return super.choose(key);
} else {
return chosen;
}
}
笔记:Spring Cloud Ribbon 客户端配置详解的更多相关文章
- Spring Cloud Eureka 常用配置详解,建议收藏!
前几天,栈长分享了 <Spring Cloud Eureka 注册中心集群搭建,Greenwich 最新版!>,今天来分享下 Spring Cloud Eureka 常用的一些参数配置及说 ...
- Spring学习 6- Spring MVC (Spring MVC原理及配置详解)
百度的面试官问:Web容器,Servlet容器,SpringMVC容器的区别: 我还写了个文章,说明web容器与servlet容器的联系,参考:servlet单实例多线程模式 这个文章有web容器与s ...
- Spring 入门 web.xml配置详解
Spring 入门 web.xml配置详解 https://www.cnblogs.com/cczz_11/p/4363314.html https://blog.csdn.net/hellolove ...
- 笔记:Spring Cloud Ribbon 客户端负载均衡
Spring Cloud Ribbon 是一个基于 HTTP 和 TCP 的客户端负载均衡工具,基于 Netflix Ribbon 实现,通过Spring Cloud 的封装,可以让我们轻松的将面向服 ...
- 跟我学Spring Cloud(Finchley版)-20-Spring Cloud Config-Git仓库配置详解 原
在跟我学Spring Cloud(Finchley版)-19-配置中心-Spring Cloud Config 一节中,已实现使用Git仓库作为Config Server的后端存储,本节详细探讨如何配 ...
- Spring Cloud Zuul 限流详解(附源码)(转)
在高并发的应用中,限流往往是一个绕不开的话题.本文详细探讨在Spring Cloud中如何实现限流. 在 Zuul 上实现限流是个不错的选择,只需要编写一个过滤器就可以了,关键在于如何实现限流的算法. ...
- Spring Cloud(十二):Spring Cloud Zuul 限流详解(附源码)(转)
前面已经介绍了很多zuul的功能,本篇继续介绍它的另一大功能.在高并发的应用中,限流往往是一个绕不开的话题.本文详细探讨在Spring Cloud中如何实现限流. 在 Zuul 上实现限流是个不错的选 ...
- Spring Cloud Ribbon客户端负载均衡(四)
序言 Ribbon 是一个客户端负载均衡器(Nginx 为服务端负载均衡),它赋予了应用一些支配 HTTP 与 TCP 行为的能力,可以得知,这里的客户端负载均衡也是进程内负载均衡的一种.它在 Spr ...
- Spring Cloud Ribbon 客户端负载均衡 4.3
在分布式架构中,服务器端负载均衡通常是由Nginx实现分发请求的,而客户端的同一个实例部署在多个应用上时,也需要实现负载均衡.那么Spring Cloud中是否提供了这种负载均衡的功能呢?答案是肯 ...
随机推荐
- SSH服务端配置、优化加速、安全防护
CentOS7自带的SSH服务是OpenSSH中的一个独立守护进程SSHD.由于使用telnet在网络中是明文传输所以用其管理服务器是非常不安全的不安全,SSH协议族可以用来对服务器的管理以及在计算机 ...
- 老司机教你在windows不用软件隐藏重要文件
每个人电脑里面都有些秘密,但是别人需要使用你的电脑时,有可能会看到,但是我们又不想让别人发现时,我们可以将其隐藏,那么别人就不会看到了.360文件保险柜.腾讯电脑管家等等.使用软件繁琐软件过大还会拖慢 ...
- 初版python计算器
作业: 使用正则表达式实现计算器功能. 实现: 1.实现带括号的计算 2.实现指数.加减乘除求余等功能 先看运行结果: 请输入您的计算式: 1 - 2 * ( (60-30 +(-40.0/5) * ...
- Link/cut Tree
Link/cut Tree 一棵link/cut tree是一种用以表示一个森林,一个有根树集合的数据结构.它提供以下操作: 向森林中加入一棵只有一个点的树. 将一个点及其子树从其所在的树上断开. 将 ...
- R语言︱机器学习模型评估方案(以随机森林算法为例)
笔者寄语:本文中大多内容来自<数据挖掘之道>,本文为读书笔记.在刚刚接触机器学习的时候,觉得在监督学习之后,做一个混淆矩阵就已经足够,但是完整的机器学习解决方案并不会如此草率.需要完整的评 ...
- Redis相关指令文档
连接控制 QUIT 关闭连接 AUTH (仅限启用时)简单的密码验证 适合全体类型的命令 EXISTS key 判断一个键是否存在;存在返回 1;否则返回0; DEL key 删除某个key,或是一系 ...
- TypeError: Error #1009: 无法访问空对象引用的属性或方法
1.错误描述 TypeError: Error #1009: 无法访问空对象引用的属性或方法. at FirstMap/search_clickHandler()[E:\Flash Builder\M ...
- asp.net+jQueryRotate开发幸运大转盘
在线抽奖程序在很多网站上很多,抽奖形式多种多样,Flash抽奖偏多,本文将给大家介绍jQuery转盘抽奖,结合代码实例将使用jQuery和asp.net来实现转盘抽奖程序,为了便于理解,文章贴出实现源 ...
- 【原】Java学习笔记029 - 映射
package cn.temptation; import java.util.HashMap; import java.util.Map; public class Sample01 { publi ...
- Tmux使用说明
tmux通过一个终端登录远程主机并运行,其中可开启多个控制台的终端复用.其结构如下: server 服务器.输入tmux命令时就开启了一个服务器. session 会话.一个服务器可以包含多 ...