学习TensorFlow,多层卷积神经网络
一、网络结构
二、代码
from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data', one_hot=True) import tensorflow as tf sess = tf.InteractiveSession() def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32]) x_image = tf.reshape(x, [-1,28,28,1]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) W_fc1 = weight_variable([7 * 7 * 64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) keep_prob = tf.placeholder(tf.float32) h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv)) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) sess.run(tf.initialize_all_variables()) for i in range(20000): batch = mnist.train.next_batch(50) if i%100 == 0: train_accuracy = accuracy.eval(feed_dict={ x:batch[0], y_: batch[1], keep_prob: 1.0}) print("step %d, training accuracy %g"%(i, train_accuracy)) train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) print("test accuracy %g"%accuracy.eval(feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
三、运行结果
参考教程:https://www.tensorflow.org/versions/r0.7/tutorials/mnist/pros/index.html#first-convolutional-layer
学习TensorFlow,多层卷积神经网络的更多相关文章
- 深度学习笔记 (二) 在TensorFlow上训练一个多层卷积神经网络
上一篇笔记主要介绍了卷积神经网络相关的基础知识.在本篇笔记中,将参考TensorFlow官方文档使用mnist数据集,在TensorFlow上训练一个多层卷积神经网络. 下载并导入mnist数据集 首 ...
- CNN学习笔记:卷积神经网络
CNN学习笔记:卷积神经网络 卷积神经网络 基本结构 卷积神经网络是一种层次模型,其输入是原始数据,如RGB图像.音频等.卷积神经网络通过卷积(convolution)操作.汇合(pooling)操作 ...
- 使用TensorFlow的卷积神经网络识别自己的单个手写数字,填坑总结
折腾了几天,爬了大大小小若干的坑,特记录如下.代码在最后面. 环境: Python3.6.4 + TensorFlow 1.5.1 + Win7 64位 + I5 3570 CPU 方法: 先用MNI ...
- TensorFlow实现卷积神经网络
1 卷积神经网络简介 在介绍卷积神经网络(CNN)之前,我们需要了解全连接神经网络与卷积神经网络的区别,下面先看一下两者的结构,如下所示: 图1 全连接神经网络与卷积神经网络结构 虽然上图中显示的全连 ...
- tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图
tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图 因为很多 demo 都比较复杂,专门抽出这两个函数,写的 demo. 更多教程:http://www.tensorflown ...
- tensorflow学习笔记七----------卷积神经网络
卷积神经网络比神经网络稍微复杂一些,因为其多了一个卷积层(convolutional layer)和池化层(pooling layer). 使用mnist数据集,n个数据,每个数据的像素为28*28* ...
- tensorflow学习之路-----卷积神经网络个人总结
卷积神经网络大总结(个人理解) 神经网络 1.概念:从功能他们模仿真实数据 2.结构:输入层.隐藏层.输出层.其中隐藏层要有的参数:权重.偏置.激励函数.过拟合 3.功能:能通过模仿,从而学到事件 其 ...
- 学习笔记TF027:卷积神经网络
卷积神经网络(Convolutional Neural Network,CNN),可以解决图像识别.时间序列信息问题.深度学习之前,借助SIFT.HoG等算法提取特征,集合SVM等机器学习算法识别图像 ...
- TensorFlow构建卷积神经网络/模型保存与加载/正则化
TensorFlow 官方文档:https://www.tensorflow.org/api_guides/python/math_ops # Arithmetic Operators import ...
- Tensorflow之卷积神经网络(CNN)
前馈神经网络的弊端 前一篇文章介绍过MNIST,是采用的前馈神经网络的结构,这种结构有一个很大的弊端,就是提供的样本必须面面俱到,否则就容易出现预测失败.如下图: 同样是在一个图片中找圆形,如果左边为 ...
随机推荐
- 《Java技术》第二次作业--面向对象基础
(一)学习总结 1.什么是构造方法?什么是构造方法的重载?下面的程序是否可以通过编译?为什么? public class Test { public static void main(String a ...
- H3C S3100交换机配置VLAN和远程管理
一.基本设置 1. console线连接成功 2. 进入系统模式 <H3C>system-view //提示符由<H3C> 变为 [H3C] 3. 更改设备名称 [H3C]sy ...
- JFinal 极速开发框架的优点和不足的地方
http://www.360doc.com/content/16/1226/10/31460730_617731802.shtml http://www.sohu.com/a/122571150_46 ...
- 浅析java内存管理机制
内存管理是计算机编程中的一个重要问题,一般来说,内存管理主要包括内存分配和内存回收两个部分.不同的编程语言有不同的内存管理机制,本文在对比C++和Java语言内存管理机制的不同的基础上,浅析java中 ...
- 地址四级联动的vue组件
一.效果图如下: 二.思路 主要在vue中结合 mint-ui组件的Picker和Popup方法,负责对json地址进行展示: 三.代码地址 四.说明 address4.json最好是在点击父组件的地 ...
- word_count
网址:http://www.wimoney.xin/HTML/upload.html 在我的网站上干不起,不晓得是不是文件保存的问题,也可能是windows和linux有些地方有差异,妈个鸡,我得再去 ...
- Windows无法安装到这个磁盘
今天手动装系统的时候出现以下这样的错误, 请看图: 进入BIOS F9 Setup Defaults ,初始化恢复 1.在进行windows安装分区时, 磁盘分区界面无法继续进行,出现" ...
- AC的故事大结局山寨版(下)(最大流)
福建工程学院第十二届ACM程序设计大赛真题 AC的故事大结局山寨版(下) TimeLimit:2000MS MemoryLimit:128MB 64-bit integer IO format:%l ...
- OWASP Top 10十大风险 – 10个最重大的Web应用风险与攻防
先来看几个出现安全问题的例子 OWASP TOP10 开发为什么要知道OWASP TOP10 TOP1-注入 TOP1-注入的示例 TOP1-注入的防范 TOP1-使用ESAPI(https://gi ...
- Docker: Failed to get D-Bus connection: No connection to service
Issue: When you execute systemctl command in docker container, you may receive following error. Erro ...