hdu 5317 合数分解+预处理
RGCDQ
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 2818 Accepted Submission(s): 1108
In the next T lines, each line contains L, R which is mentioned above.
All input items are integers.
1<= T <= 1000000
2<=L < R<=1000000
See the sample for more details.
2 3
3 5
1
/*
hdu 5317 合数分解+预处理 problem:
查找区间[l,r]中 gcd(F[a[i]],F[a[j]])的最大值. F[x]为x的分解出的质因子种类数 solve:
可以先计算一下,1e6时质因子最多有7个. 所以可以dp[maxn][7]先预处理出质因子个数的前缀和.
然后查找 1~7谁出现了2次及以上 hhh-2016-08-21 10:38:45
*/
#pragma comment(linker,"/STACK:124000000,124000000")
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <vector>
#include <map>
#define lson ch[0]
#define rson ch[1]
#define ll long long
#define clr(a,b) memset(a,b,sizeof(a))
#define key_val ch[ch[root][1]][0]
using namespace std;
const int maxn = 1000000;
const int INF = 1e9+10; int prime[maxn+1]; void getPrime()
{
memset(prime,0,sizeof(prime));
for(int i = 2;i <= maxn;i++)
{
if(!prime[i]) prime[++prime[0]] = i;
for(int j = 1;j <= prime[0] && prime[j] <= maxn/i;j++)
{
prime[prime[j]*i] = 1;
if(i % prime[j] == 0) break;
}
}
} int getFactor(int x)
{
int t = x;
int fant = 0;
for(int i = 1;prime[i] <= t/prime[i];i++)
{
if(t % prime[i] == 0)
{
fant ++;
while(t % prime[i] == 0)
t /= prime[i];
}
}
if(t != 1)
fant ++;
return fant;
} int dp[maxn+1][7]; int main()
{
getPrime();
for(int i = 0;i <= 7;i++)
dp[0][i] = 0;
for(int i = 1;i <= maxn;i++)
{
int t = getFactor(i);
for(int j = 0;j < 7;j++)
{
if(t == j+1)
dp[i][j] = dp[i-1][j] + 1;
else
dp[i][j] = dp[i-1][j];
}
}
int T;
int a,b;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&a,&b);
int tMax = 0;
for(int i = 6;i >= 0;i--)
{
if(dp[b][i] - dp[a-1][i] > 1)
{
tMax =i;
break;
}
}
printf("%d\n",tMax+1);
}
}
hdu 5317 合数分解+预处理的更多相关文章
- hdu 4777 树状数组+合数分解
Rabbit Kingdom Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) T ...
- HDU 4610 Cards (合数分解,枚举)
Cards Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...
- HDU 4497 GCD and LCM (合数分解)
GCD and LCM Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)Total ...
- hdu 5317 RGCDQ(前缀和)
题目链接:hdu 5317 这题看数据量就知道需要先预处理,然后对每个询问都需要在 O(logn) 以下的复杂度求出,由数学规律可以推出 1 <= F(x) <= 7,所以对每组(L, R ...
- hdu_4497GCD and LCM(合数分解)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4497 GCD and LCM Time Limit: 2000/1000 MS (Java/Other ...
- Perfect Pth Powers pku-1730(筛+合数分解)
题意:x可以表示为bp, 求这个p的最大值,比如 25=52, 64=26, 然后输入x 输出 p 就是一个质因子分解.算法.(表示数据上卡了2个小时.) 合数质因子分解模板. ]; ]; ; ;n ...
- pku1365 Prime Land (数论,合数分解模板)
题意:给你一个个数对a, b 表示ab这样的每个数相乘的一个数n,求n-1的质数因子并且每个指数因子k所对应的次数 h. 先把合数分解模板乖乖放上: ; ans != ; ++i) { ) { num ...
- Gym101889J. Jumping frog(合数分解+环形dp预处理)
比赛链接:传送门 题目大意: 一只青蛙在长度为N的字符串上跳跃,“R”可以跳上去,“P”不可以跳上去. 字符串是环形的,N-1和0相连. 青蛙的跳跃距离K的取值范围是[1, N-1],选定K之后不可改 ...
- hdu 4568 Hunter(spfa预处理 + 状压dp)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4568 思路:首先spfa预处理出每对宝藏之间的最短距离以及宝藏到边界的最短距离,然后dp[state] ...
随机推荐
- Python web服务器
Python 配置wsgi接口# 引入Python wsgi包 from wsgiref.simple_server import make_server # 撰写服务器端程序代码 def Appli ...
- Scala Option类型
转载自: Scala 初学者指南, 这里有一系列很棒的文章 类型 Option 可能你已经见过它在 Map API 中的使用:在实现自己的提取器时,我们也用过它, 然而,它还需要更多的解释. 你可能会 ...
- cocos2d 判断旋转矩形是否包含某个点
本来想画个图演示一下,但是折腾了一会发现画不好,我的win10系统没有安装office,以后再看的话再补上吧.不废话了. 如图所以,如果判断点P是否被矩形A所包含,非常容易.那么如果矩形A以中心点逆时 ...
- Python内置函数(36)——reversed
英文文档: reversed(seq) Return a reverse iterator. seq must be an object which has a __reversed__() meth ...
- sql优化基础篇
优化的步骤: 0.先sql运行看看是否真的很慢,注意设置SQL_NO_CACHE 1.where条件单表查,锁定最小返回记录表.这句话的意思是把查询语句的where都应用到表中返回的记录数最小的表开始 ...
- spring-oauth-server实践:使用授权方式四:client_credentials 模式下access_token做业务!!!
spring-oauth-server入门(1-10)使用授权方式四:client_credentials 模式下access_token做业务!!! 准备工作 授权方式四::客户端方式: 服务网关地 ...
- Python基础学习篇章四
一. Python数据类型之字典 1. 键的排序:for循环 由于字典不是序列,因此没有可靠的从左至右的顺序.这就导致当建立一个字典,将它打印出来,它的键也许会以与我们输入时的不同的顺序出现.有时候我 ...
- Extensions in UWP Community Toolkit - Mouse Cursor
概述 UWP Community Toolkit Extensions 中有一个为 Mouse 提供的扩展 - Mouse Cursor Extensions,本篇我们结合代码详细讲解 Mouse C ...
- 整理一下 System.Linq.Enumerable 类中的那些比较少用的方法
Linq 虽然用得多,但是里面有一些方法比较少用,因此整理一下.Enumerable 类的所有方法可以在 MSDN 上查阅到:https://msdn.microsoft.com/zh-cn/libr ...
- java将一个正整数分解质因数。例如:输入90,打印出90=2*3*3*5。
首先我们的算法是:例如 输入的是 90 1.找到90的最小公约数(1除外)是 2 2.然后把公约数 2 输出 3.接着用 90 / 2 = 45 (如果这里是素数,就结束,否则继续找最小公约数) 4. ...