[BZOJ]2194: 快速傅立叶之二
题目大意:给定序列a,b,求序列c满足c[k]=sigma(a[i]*b[i-k]) (k<=i<n)。(n<=10^5)
思路:观察发现就是普通的卷积反一反(翻转ab其中一个后做卷积,倒着输出即可),FFT模板复习。
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
inline int read()
{
int x;char c;
while((c=getchar())<''||c>'');
for(x=c-'';(c=getchar())>=''&&c<='';)x=(x<<)+(x<<)+c-'';
return x;
}
#define MN 262144
struct cp
{
double r,i;
cp(double r=,double i=):r(r),i(i){}
cp operator+(cp b){return cp(r+b.r,i+b.i);}
cp operator-(cp b){return cp(r-b.r,i-b.i);}
cp operator*(cp b){return cp(r*b.r-i*b.i,r*b.i+i*b.r);}
}w[][MN+],a[MN+],b[MN+],c[MN+];
const double pi=acos(-);
int N,R[MN+];
void init(int n)
{
for(N=;N<n;N<<=);
int i,j,k;cp g(cos(*pi/N),sin(*pi/N));
for(i=w[][].r=;i<N;++i)w[][i]=w[][i-]*g;
for(i=w[][].r=;i<N;++i)w[][i]=w[][N-i];
for(i=j=;i<N;R[++i]=j)for(k=N>>;(j^=k)<k;k>>=);
}
void fft(cp*x,int v)
{
int i,j,k;
for(i=j=;i<N;++i)if(i<R[i])swap(x[i],x[R[i]]);
for(i=;i<N;i<<=)for(j=;j<N;j+=i<<)for(k=;k<i;++k)
{
cp p=x[i+j+k]*w[v][N/(i<<)*k];
x[i+j+k]=x[j+k]-p;x[j+k]=x[j+k]+p;
}
if(v)for(i=;i<N;++i)x[i].r/=N,x[i].i/=N;
}
int main()
{
int n=read(),i;
for(i=;i<n;++i)a[n-i-].r=read(),b[i]=read();
init(n<<);fft(a,);fft(b,);
for(i=;i<N;++i)c[i]=a[i]*b[i];fft(c,);
for(i=n;i--;)printf("%d\n",int(c[i].r+0.5));
}
[BZOJ]2194: 快速傅立叶之二的更多相关文章
- bzoj 2194: 快速傅立叶之二 -- FFT
2194: 快速傅立叶之二 Time Limit: 10 Sec Memory Limit: 259 MB Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k & ...
- bzoj 2194 快速傅立叶之二 —— FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2194 如果把 a 序列翻转,则卷积得到的是 c[n-i],再把得到的 c 序列翻转即可. 代 ...
- 【刷题】BZOJ 2194 快速傅立叶之二
Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. a,b中的元素均为小于等于100的非 ...
- BZOJ.2194.快速傅立叶之二(FFT 卷积)
题目链接 \(Descripiton\) 给定\(A[\ ],B[\ ]\),求\[C[k]=\sum_{i=k}^{n-1}A[i]*B[i-k]\ (0\leq k<n)\] \(Solut ...
- BZOJ 2194 快速傅立叶之二 ——FFT
[题目分析] 咦,这不是卷积裸题. 敲敲敲,结果样例也没过. 看看看,卧槽i和k怎么反了. 艹艹艹,把B数组取个反. 靠靠靠,怎么全是零. 算算算,最终的取值范围算错了. 交交交,总算是A掉了. [代 ...
- bzoj 2194: 快速傅立叶之二【NTT】
看别的blog好像我用了比较麻烦的方法-- (以下的n都--过 \[ c[i]=\sum_{j=i}^{n}a[i]*b[j-i] \] 设j=i+j \[ c[i]=\sum_{j=0}^{n-i} ...
- BZOJ 2194 快速傅立叶变换之二 | FFT
BZOJ 2194 快速傅立叶变换之二 题意 给出两个长为\(n\)的数组\(a\)和\(b\),\(c_k = \sum_{i = k}^{n - 1} a[i] * b[i - k]\). 题解 ...
- 【BZOJ 2194】2194: 快速傅立叶之二(FFT)
2194: 快速傅立叶之二 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1273 Solved: 745 Description 请计算C[k]= ...
- 【BZOJ】2194: 快速傅立叶之二
http://www.lydsy.com/JudgeOnline/problem.php?id=2194 题意:求$c[k]=\sum_{k<=i<n} a[i]b[i-k], n< ...
随机推荐
- 团队作业7——第二次项目冲刺(Beta版本12.08)
项目每个成员的进展.存在问题.接下来两天的安排. 已完成的内容:完成了排行榜的测试.上传头像功能的原型设计.界面优化 计划完成的内容:上传头像功能开发.测试.头像裁剪原型设计 每个人的工作 (有wor ...
- iOS开发之Objective-C与JavaScript的交互
UIWebView是iOS最常用的SDK之一,它有一个stringByEvaluatingJavaScriptFromString方法可以将javascript嵌入页面中,通过这个方法我们可以在iOS ...
- codevs 3342 绿色通道
codevs 3342 绿色通道 http://codevs.cn/problem/3342/ 难度等级:黄金 题目描述 Description <思远高考绿色通道>(Green Pass ...
- 【详细】Lucene使用案例
Lucene是apache软件基金会4 jakarta项目组的一个子项目,是一个开放源代码的全文检索引擎工具包,但它不是一个完整的全文检索引擎,而是一个全文检索引擎的架构,提供了完整的查询引擎和索引引 ...
- EXT3文件系统误删除导致文件系统中的邮件丢失恢复方法
一.故障描述 由8块盘组成的RAID5, 上层是EXT3文件系统,由于误删除导致文件系统中的邮件丢失 二.镜像磁盘为防止数据恢复过程中由于误操作对原始磁盘造成二次破坏, 使用winhex软件为每块磁盘 ...
- 再议Python协程——从yield到asyncio
协程,英文名Coroutine.前面介绍Python的多线程,以及用多线程实现并发(参见这篇文章[浅析Python多线程]),今天介绍的协程也是常用的并发手段.本篇主要内容包含:协程的基本概念.协程库 ...
- 消除ExtJS6的extjs-trila字样
- mysql常用命令整理
#不压缩备份 mysqldump -u root -p userpassword databasename > /tmp/backupfile.sql #压缩备份 mysqldump -u ro ...
- Python-进程与线程理论基础-Day10
进程与线程理论基础 1.背景知识 理论基础: 一 操作系统的作用: 1:隐藏丑陋复杂的硬件接口,提供良好的抽象接口 2:管理.调度进程,并且将多个进程对硬件的竞争变得有序 二 多道技术: 1.产生背景 ...
- GIT入门笔记(14)- 链接到远程仓库
1.远程仓库地址https://github.com/ 2.注册远程仓库账号 3.生成ssh-key,并配置到github 由于你的本地Git仓库和GitHub仓库之间的传输是通过SSH加密的,所以, ...