bzoj1233[Usaco2009Open]干草堆tower 单调队列优化dp
1233: [Usaco2009Open]干草堆tower
Time Limit: 10 Sec Memory Limit: 162 MB
Submit: 983 Solved: 464
[Submit][Status][Discuss]
Description
奶牛们讨厌黑暗。 为了调整牛棚顶的电灯的亮度,Bessie必须建一座干草堆使得她能够爬上去够到灯泡 。一共有N大包的干草(1<=N<=100000)(从1到N编号)依靠传送带连续的传输进牛棚来。第i包干草有一个 宽度W_i(1<=w_i<=10000)。所有的干草包的厚度和高度都为1. Bessie必须利用所有N包干草来建立起干草堆,并且按照他们进牛棚的顺序摆放。她可以相放多少包就放 多少包来建立起tower的地基(当然是紧紧的放在一行中)。接下来他可以放置下一个草包放在之前一级 的上方来建立新的一级。注意:每一级不能比下面的一级宽。她持续的这么放置,直到所有的草包都被安 置完成。她必须按顺序堆放,按照草包进入牛棚的顺序。说得更清楚一些:一旦她将一个草包放在第二级 ,她不能将接下来的草包放在地基上。 Bessie的目标是建立起最高的草包堆。
Input
第1行:一个单一的整数N。 第2~N+1行:一个单一的整数:W_i。
Output
第一行:一个单一的整数,表示Bessie可以建立的草包堆的最高高度。
Sample Input
1
2
3
Sample Output
输出说明:
前两个(宽度为1和2的)放在底层,总宽度为3,在第二层放置宽度为3的。
+----------+
| 3 |
+---+------+
| 1 | 2 |
+---+------+
HINT
Source
很扯淡的一道题目。
可以看出这道题最后形成的图形应该是金字塔形的,而对于材料相同金字塔来说 底部越窄形成的高度越高
这个通过感性的方式理解应该是显然的,但是又感觉有点玄乎,感觉这篇博客的证明很有道理
http://blog.csdn.net/u010336344/article/details/52821271
所以得到一个结论,对于同一层来说 这一层越窄方案就越优
由于上面的必须不宽于下面,考虑倒着dp
f[i]=sum[i]-sum[j] 满足sum[i]-sum[j]>=f[j]即sum[i]>=sum[j]+f[j]
要让f[i]最小必须让j尽量大并且j满足条件
可以发现,sum[i]>=sum[j]+f[j]中sum[i]是不变的,那么后面的部分越小越可以满足
故 若有 k<j && sum[k]+f[k]>=sum[j]+f[j] k是肯定不会被转移的
因此可以维护一个单调递增的队列来转移dp
dp时记录g[i]来表示搭到第i个最高搭的层数
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#define N 100005
using namespace std;
int n,a[N],sum[N],q[N],f[N],g[N];
int main(){
scanf("%d",&n);
for(int i=n;i;i--)scanf("%d",&a[i]);
for(int i=;i<=n;i++)sum[i]=sum[i-]+a[i];
int l=,r=;
for(int i=;i<=n;i++){
while(l<r&&sum[i]>=sum[q[l+]]+f[q[l+]])l++;//满足条件的情况下j越大 f[i]越小
int j=q[l];g[i]=g[j]+;f[i]=sum[i]-sum[j];
while(l<r&&sum[q[r]]+f[q[r]]>=sum[i]+f[i])r--;
q[++r]=i;
}
printf("%d\n",g[n]);return ;
}
bzoj1233[Usaco2009Open]干草堆tower 单调队列优化dp的更多相关文章
- BZOJ1233 [Usaco2009Open]干草堆tower 【单调队列优化dp】
题目链接 BZOJ1233 题解 有一个贪心策略:同样的干草集合,底长小的一定不比底长大的矮 设\(f[i]\)表示\(i...N\)形成的干草堆的最小底长,同时用\(g[i]\)记录此时的高度 那么 ...
- bzoj1233 [Usaco2009Open]干草堆tower 【单调队列dp】
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1233 单调队列优化的第一题,搞了好久啊,跟一开始入手斜率优化时感觉差不多... 这一题想通了 ...
- BZOJ1233 [Usaco2009Open]干草堆tower[贪心+单调队列优化]
地址 注意思路!多看几遍! 很巧妙的一道题.不再是决策点以dp值中一部分含j项为维护对象,而是通过维护条件来获取决策. 首先有个贪心策略,让底层的宽度尽可能小,才能让高度尽可能高.所以应该倒着dp,表 ...
- bzoj1233: [Usaco2009Open]干草堆tower
Description 奶牛们讨厌黑暗. 为了调整牛棚顶的电灯的亮度,Bessie必须建一座干草堆使得她能够爬上去够到灯泡 .一共有N大包的干草(1<=N<=100000)(从1到N编号) ...
- BZOJ1233 [Usaco2009Open]干草堆tower 和 BZOJ3549 [ONTAK2010]Tower
题意 Problem 3549. -- [ONTAK2010]Tower 3549: [ONTAK2010]Tower Time Limit: 10 Sec Memory Limit: 64 MBS ...
- 【BZOJ 1233】 [Usaco2009Open]干草堆tower (单调队列优化DP)
1233: [Usaco2009Open]干草堆tower Description 奶牛们讨厌黑暗. 为了调整牛棚顶的电灯的亮度,Bessie必须建一座干草堆使得她能够爬上去够到灯泡 .一共有N大包的 ...
- bzoj 1233: [Usaco2009Open]干草堆tower
1233: [Usaco2009Open]干草堆tower Description 奶牛们讨厌黑暗. 为了调整牛棚顶的电灯的亮度,Bessie必须建一座干草堆使得她能够爬上去够到灯泡 .一共有N大包的 ...
- 单调队列优化DP,多重背包
单调队列优化DP:http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html 单调队列优化多重背包:http://blog.csdn ...
- bzoj1855: [Scoi2010]股票交易--单调队列优化DP
单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...
随机推荐
- Django 测试驱动开发
第一章 1.编写functional_tests.py from selenium import webdriver browser = webdriver.Firefox() browser.get ...
- 十、Python练习----基础搭建飞机大战
只是简单的学习了pygame,实现飞机的摧毁还需要多张图片的切换,和sprite(碰撞精灵),还有多种音效的添加(如背景音乐.摧毁特效).以后再深入学习我只是练习一下python. 一.搭建界面(基于 ...
- nyoj 对决
对决 时间限制:1000 ms | 内存限制:65535 KB 难度:0 描述 Topcoder 招进来了 n 个新同学,Yougth计划把这个n个同学分成两组,要求每组中每个人必须跟另一组中 ...
- 详解k8s零停机滚动发布微服务 - kubernetes
1.前言 在当下微服务架构盛行的时代,用户希望应用程序时时刻刻都是可用,为了满足不断变化的新业务,需要不断升级更新应用程序,有时可能需要频繁的发布版本.实现"零停机"." ...
- 如何打开hprof文件
最近学习深入java虚拟机的书,照着里面的例子跑了下. 下面是demo: /** * VM Args:-Xms20m -Xmx20m -XX:+HeapDumpOnOutOfMemoryError * ...
- Python入门之函数的装饰器
本章目录: 装饰器: 一.为什么要用装饰器 二.什么是装饰器 三.无参装饰器 四.装饰器语法糖 五.认证装饰器实现 六.叠加多个装饰器 七.带参装饰器 ======================== ...
- Java面向对象之封装 入门实例(一)
一.基础概念 (一)面向对象的三大特征: 1.封装 2.继承 3.多态 (二)封装:隐藏实现细节,对外提供公共的访问方式(接口). 封装的体现之一:将属性都 ...
- easygui的导入方式
方法一: >>> import easygui >>> easygui.msgbox('hello') 方法二: >>> from easygui ...
- 知物由学 | 基于DNN的人脸识别中的反欺骗机制
"知物由学"是网易云易盾打造的一个品牌栏目,词语出自汉·王充<论衡·实知>.人,能力有高下之分,学习才知道事物的道理,而后才有智慧,不去求问就不会知道."知物 ...
- 【DataMagic】如何在万亿级别规模的数据量上使用Spark
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文首发在云+社区,未经许可,不得转载. 作者:张国鹏 | 腾讯 运营开发工程师 一.前言 Spark作为大数据计算引擎,凭借其快速.稳定. ...