1681 公共祖先

基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题
 

有一个庞大的家族,共n人。已知这n个人的祖辈关系正好形成树形结构(即父亲向儿子连边)。

在另一个未知的平行宇宙,这n人的祖辈关系仍然是树形结构,但他们相互之间的关系却完全不同了,原来的祖先可能变成了后代,后代变成的同辈……

两个人的亲密度定义为在这两个平行宇宙有多少人一直是他们的公共祖先。

整个家族的亲密度定义为任意两个人亲密度的总和。

Input
第一行一个数n(1<=n<=100000)
接下来n-1行每行两个数x,y表示在第一个平行宇宙x是y的父亲。
接下来n-1行每行两个数x,y表示在第二个平行宇宙x是y的父亲。
Output
一个数,表示整个家族的亲密度。
Input示例
5
1 3
3 5
5 4
4 2
1 2
1 3
3 4
1 5
Output示例
6
/*
51 nod 1681 公共祖先 (主席树+dfs序) problem:
给你两棵树, 两个节点之间的值定义为在两个棵树中有多少一直是它们的公共祖先
求任意两个点的亲密度的总和 solve:
问题可以转换成每个点能够成为多少次公共祖先. 如果lca一直是a,b的公共祖先, 那么
a,b一定在lca的子树中. 所以找出两棵树中lca点的子树中的相同点的个数,就能计算出多少对点
在两棵树中都有lca这个公共祖先. 先处理出a树的dfs序,然后用其作为b树中dfs序的值. 在a树中,如果u在lca的子树中,那么它的序号
大于dfa[lca]小于等于eda[lca],即进出值. 所以在b树的lca的子树中找出序号在[dfa[lca],eda[lca]]
之间的个数(可以主席树维护), 就是lca子树所含相同点的个数. hhh-2016/09/16-11:36:14
*/
#pragma comment(linker,"/STACK:124000000,124000000")
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <vector>
#include <math.h>
#include <queue>
#include <set>
#include <map>
//#define lson i<<1
//#define rson i<<1|1
#define ll long long
#define clr(a,b) memset(a,b,sizeof(a))
#define scanfi(a) scanf("%d",&a)
#define scanfs(a) scanf("%s",a)
#define scanfl(a) scanf("%I64d",&a)
#define scanfd(a) scanf("%lf",&a)
#define key_val ch[ch[root][1]][0]
#define eps 1e-7
#define inf 0x3f3f3f3f3f3f3f3f
using namespace std;
const ll mod = 1e9+7;
const int maxn = 100010;
const double PI = acos(-1.0); template<class T> void read(T&num)
{
char CH;
bool F=false;
for(CH=getchar(); CH<'0'||CH>'9'; F= CH=='-',CH=getchar());
for(num=0; CH>='0'&&CH<='9'; num=num*10+CH-'0',CH=getchar());
F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p)
{
if(!p)
{
puts("0");
return;
}
while(p) stk[++ tp] = p%10, p/=10;
while(tp) putchar(stk[tp--] + '0');
putchar('\n');
} struct Edge
{
int to,next;
};
Edge edge[maxn*2];
int tot,head[maxn];
int in[maxn];
int cnt;
void ini()
{
tot = 0;
cnt = 0;
memset(in,0,sizeof(in));
memset(head,-1,sizeof(head));
}
void add_edge(int u,int v)
{
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
}
int dfa[maxn],dfb[maxn],ta[maxn],tb[maxn];
int eda[maxn],edb[maxn];
void dfs(int u,int pre,int flag)
{
if(!flag) dfa[u] = ++ cnt, ta[u] = cnt;
else dfb[u] = ++ cnt, tb[cnt] = ta[u];
for(int i = head[u]; i != -1; i = edge[i].next)
{
int v = edge[i].to;
if(v == pre)continue;
dfs(v,u,flag);
}
if(!flag) eda[u] = cnt;
else edb[u] = cnt;
} int toa;
int lson[maxn * 30],rson[maxn * 30] ;
ll c[maxn * 30]; int build(int l,int r)
{
int root = toa ++ ;
c[root] = 0;
if(l != r)
{
int mid = (l+r) >> 1;
build(l,mid);
build(mid+ 1,r);
}
return root ;
}
int n;
int update(int root,int pos,ll val)
{
int newroot = toa ++ ,tmp = newroot;
c[newroot ] = c[root] + val;
int l = 1,r = n; while(l < r)
{
int mid = (l+r) >> 1;
if(pos <= mid)
{
lson[newroot] = toa ++ ,rson[newroot] = rson[root];
newroot = lson[newroot],root = lson[root];
r = mid;
}
else
{
rson[newroot] = toa ++ ,lson[newroot] = lson[root];
newroot = rson[newroot] ,root = rson[root];
l = mid + 1;
}
c[newroot] = c[root] + val;
}
return tmp;
} ll query(int root1,int root2,int la,int ra,int l,int r)
{
if(l >= la && r <= ra)
{
return c[root2] - c[root1];
}
int mid = (l + r) >> 1;
ll ans = 0;
if(la <= mid)
{
ans += query(lson[root1],lson[root2],la,ra,l,mid);
}
if(ra > mid)
{
ans += query(rson[root1],rson[root2],la,ra,mid+1,r);
}
return ans;
} void cal(int flag)
{
int u,v;
ini();
for(int i = 1; i < n; i++)
{
read(u),read(v);
add_edge(u,v);
add_edge(v,u);
in[v] ++ ;
}
for(int i = 1; i <= n;i++)
{
if(!in[i])
{
dfs(i,-1,flag);
break;
}
}
}
int T[maxn];
int main()
{
// freopen("in.txt","r",stdin);
read(n);
toa = 0;
cal(0);
cal(1);
T[0] = build(1,n);
for(int i = 1;i <= n;i++)
{
T[i] = update(T[i-1],tb[i],1);
}
ll ans = 0;
for(int i = 1;i <= n;i++)
{
int l = dfb[i],r = edb[i];
ll t = query(T[l],T[r],dfa[i],eda[i],1,n);
ans += 1LL*t*(t-1)/2;
}
printf("%I64d\n",ans);
return 0;
}

  

51 nod 1681 公共祖先 (主席树+dfs序)的更多相关文章

  1. 「10.19」最长不下降子序列(DP)·完全背包问题(spfa优化DP)·最近公共祖先(线段树+DFS序)

    我又被虐了... A. 最长不下降子序列 考场打的错解,成功调了两个半小时还是没A, 事实上和正解的思路很近了,只是没有想到直接将前$D$个及后$D$个直接提出来 确实当时思路有些紊乱,打的时候只是将 ...

  2. 【BZOJ1803】Spoj1487 Query on a tree III 主席树+DFS序

    [BZOJ1803]Spoj1487 Query on a tree III Description You are given a node-labeled rooted tree with n n ...

  3. BZOJ3772 精神污染 【主席树 + dfs序】

    题目 兵库县位于日本列岛的中央位置,北临日本海,南面濑户内海直通太平洋,中央部位是森林和山地,与拥有关西机场的大阪府比邻而居,是关西地区面积最大的县,是集经济和文化于一体的一大地区,是日本西部门户,海 ...

  4. 刷题总结——谈笑风生(主席树+dfs序的应用)

    题目: Description 设T 为一棵有根树,我们做如下的定义:• 设a和b为T 中的两个不同节点.如果a是b的祖先,那么称“a比b不知道高明到哪里去了”.• 设a 和 b 为 T 中的两个不同 ...

  5. bzoj 3772 精神污染 主席树+dfs序

    精神污染 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 637  Solved: 177[Submit][Status][Discuss] Descri ...

  6. 【BZOJ-3545&3551】Peaks&加强版 Kruskal重构树 + 主席树 + DFS序 + 倍增

    3545: [ONTAK2010]Peaks Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1202  Solved: 321[Submit][Sta ...

  7. 【SPOJ】10628. Count on a tree(lca+主席树+dfs序)

    http://www.spoj.com/problems/COT/ (速度很快,排到了rank6) 这题让我明白了人生T_T 我知道我为什么那么sb了. 调试一早上都在想人生. 唉. 太弱. 太弱. ...

  8. BZOJ 2809: [Apio2012]dispatching [主席树 DFS序]

    传送门 题意:查询树上根节点值*子树中权值和$\le m$的最大数量 最大值是多少 求$DFS$序,然后变成区间中和$\le m$最多有几个元素,建主席树,然后权值线段树上二分就行了 $WA$:又把边 ...

  9. BZOJ_1803_Spoj1487 Query on a tree III_主席树+dfs序

    BZOJ_1803_Spoj1487 Query on a tree III_主席树 Description You are given a node-labeled rooted tree with ...

随机推荐

  1. 201621123060《JAVA程序设计》第十一周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多线程相关内容. 2. 书面作业 本次PTA作业题集多线程 1. 源代码阅读:多线程程序BounceThread 1.1 BallR ...

  2. python实现k-近邻算法

    参考:<机器学习实战>- Machine Learning in Action 一. 必备的包 实现此算法需要准备以下的包: • matplotlib,用于绘图 • numpy,数组处理库 ...

  3. 《高级软件测试》Windows平台Jira的配置

    昨天完成了Jira的下载,很开心地去睡觉等明天天亮秒配环境愉快进行使用,撰写文档,开始徜徉于软件管理测试实践,早日走向代码巅峰. 我们把安装和配置的过程来走一遍. 安装完成汤姆猫长这样子: 安装Jir ...

  4. 如何使用ILAsm与ILDasm修改.Net exe(dll)文件

    一.背景 最近项目组新上项目,交付的时间比较急迫,原本好的分支管理习惯没有遵守好,于是出现下面状况: 多个小伙伴在不同的分支上开发. 原本QA环境也存在一个阻碍性的bug A 一位同事在QA环境发布了 ...

  5. [USACO4.1]麦香牛块Beef McNuggets

    https://www.luogu.org/problemnew/show/P2737 给出n个数ai,求这n个数不能累加出的最大的数 最大的数无限大或能凑出所有的自然数则输出0 n<=10,a ...

  6. 如何书写高效的css样式

    如何书写高效的css样式? 有以下四个关键要素: 1.高效的css 2.可维护的css 3.组件化的css 4.hack-free  css 书写高效的css: 1.使用外联样式替代行间样式或内嵌样式 ...

  7. MariaDB/MySQL存储过程和函数

    本文目录:1.创建存储过程.函数 1.1 存储过程的IN.OUT和INOUT2.修改和删除存储过程.函数3.查看存储过程.函数信息 在MySQL/MariaDB中,存储过程(stored proced ...

  8. nyoj 复杂度

    复杂度 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 for(i=1;i<=n;i++) for(j=i+1;j<=n;j++) for(k=j+1;k ...

  9. Spring mvc中junit测试遇到com.mysql.jdbc.exceptions.jdbc4.MySQLSyntaxErrorException错误怎么解决

    今天遇到图片中的错误,纠结了一下,弄清楚了怎么从控制台中读取错误信息,并修改错误. com.mysql.jdbc.exceptions.jdbc4.MySQLSyntaxErrorException: ...

  10. LightningChart最新版 v.8.3 全新发布,新功能使用教程。

    LightningChart最新版v.8.3全新发布,主要介绍以下五个新功能及使用教程.   1. 网格模型,三角鼠标追踪 Tracing MeshModels with mouse. Traced ...