1486 大大走格子

题目来源: CodeForces

基准时间限制:1 秒 空间限制:131072 KB 分值: 160 难度:6级算法题
 

有一个h行w列的棋盘,里面有一些格子是不能走的,现在要求从左上角走到右下角的方案数。

Input
单组测试数据。
第一行有三个整数h, w, n(1 ≤ h, w ≤ 10^5, 1 ≤ n ≤ 2000),表示棋盘的行和列,还有不能走的格子的数目。
接下来n行描述格子,第i行有两个整数ri, ci (1 ≤ ri ≤ h, 1 ≤ ci ≤ w),表示格子所在的行和列。
输入保证起点和终点不会有不能走的格子。
Output
输出答案对1000000007取余的结果。
Input示例
3 4 2
2 2
2 3
Output示例
2
/*
51nod 1486 大大走格子(容斥原理) problem:
有一个h行w列的棋盘,里面有一些格子是不能走的,现在要求从左上角走到右下角的方案数。只能往右 或者 往下 solve:
很明显用所有的方案数减去经过黑点的方案数就是答案. 而有的重复计算,所以容斥一下.
然后就没什么想法了, 主要是觉得方案数不怎么好求(结果发现可以直接组合数解决...GG)
容斥计算出每个黑点到左上角的方案数, ans[i] - sum(ans[j] * f(j,i) while j < i) f来表示i,j之间的方案数
所以把h,w加入黑点全部求一遍. hhh-2016/09/26-21:12:09
*/
#pragma comment(linker,"/STACK:124000000,124000000")
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <vector>
#include <map>
#include <math.h>
#define lson i<<1
#define rson i<<1|1
#define ll long long
#define clr(a,b) memset(a,b,sizeof(a))
#define key_val ch[ch[root][1]][0]
using namespace std;
const int maxn = 1e6 + 1000;
const int inf = 0x3f3f3f3f;
const ll mod = 1000000007;
const double eps = 1e-7;
template<class T> void read(T&num)
{
char CH;
bool F=false;
for(CH=getchar(); CH<'0'||CH>'9'; F= CH=='-',CH=getchar());
for(num=0; CH>='0'&&CH<='9'; num=num*10+CH-'0',CH=getchar());
F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p)
{
if(!p)
{
puts("0");
return;
}
while(p) stk[++ tp] = p%10, p/=10;
while(tp) putchar(stk[tp--] + '0');
putchar('\n');
} ll pow_mod(ll a,ll n)
{
ll cnt = 1;
ll t = a % mod; while(n)
{
if(n & 1) cnt = cnt * t % mod;
t = t*t%mod;
n >>= 1;
}
return cnt;
} int h,w,n;
ll ans[maxn];
ll fac[maxn];
ll inv[maxn];
struct node
{
int a,b;
}x[maxn];
bool cmp(node u,node v)
{
if(u.a != v.a)
return u.a < v.a;
else
return u.b < v.b;
} int main()
{
read(h),read(w),read(n);
for(int i = 0;i < n;i++)
{
read(x[i].a),read(x[i].b);
}
x[n].a = h,x[n].b= w;
// for(int i = 0;i <= n;i++)
// cout << x[i].a << " " <<x[i].b <<endl;
fac[0] = inv[0] = 1;
fac[1] = 1,inv[1] = 1;
sort(x , x + n + 1,cmp);
for(int i = 2;i <= h + w;i++)
{
fac[i] = fac[i-1] * i % mod;
inv[i] = pow_mod(fac[i],mod-2);
}
for(int i = 0;i <= n;i++)
{
int tx = x[i].a,ty = x[i].b;
ans[i] = fac[tx + ty-2] * inv[tx-1]%mod * inv[ty-1] % mod;
for(int j = 0;j < i;j++)
{
if(x[j].a <= x[i].a && x[j].b <= x[i].b)
{
int tu = x[j].a,tv = x[j].b;
ans[i] = (ans[i] - ans[j]*fac[tx-tu+ty-tv] % mod * inv[tx-tu]%mod*inv[ty-tv]%mod)%mod;
} }
while(ans[i] < 0)
ans[i] += mod;
ans[i] %= mod;
}
// for(int i = 0;i < n;i++)
// print(ans[i]);
print(ans[n]);
return 0;
}

  

51nod 1486 大大走格子(容斥原理)的更多相关文章

  1. 51Nod 1486 大大走格子 —— 组合数学

    题目链接:https://vjudge.net/problem/51Nod-1486 1486 大大走格子 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: ...

  2. 51Nod 1486 大大走格子 —— 容斥

    题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1486 对于每个点,求出从起点到它,不经过其他障碍点的方案数: 求一 ...

  3. 51nod 1486 大大走格子——dp

    有一个h行w列的棋盘,里面有一些格子是不能走的,现在要求从左上角走到右下角的方案数. Input 单组测试数据. 第一行有三个整数h, w, n(1 ≤ h, w ≤ 10^5, 1 ≤ n ≤ 20 ...

  4. 51nod 1486 大大走格子——容斥

    题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1486 已知起点到某个障碍点左上角的所有点的不经过障碍的方案数,枚举 ...

  5. 51nod 1486 大大走格子(DP+组合数学)

    枚举不合法点的思想. 把障碍x坐标为第一关键字,y坐标为第二关键字排序.f[i]表示走到第i个障碍的方案数. f[i]=C(x[i]+y[i]-2,x[i]-1)-sigma(f[j]*C(x[i]- ...

  6. 51nod 1486 大大走格子(容斥+dp+组合数)

    传送门 解题思路 暴力容斥复杂度太高,无法接受,考虑用\(dp\).设\(f(i)\)表示从左上角开始不经过前面的阻断点,只经过\(i\)的阻断点.那么可以考虑容斥,用经过\(i\)的总方案数减去前面 ...

  7. 51 Nod 1486 大大走格子

    1486 大大走格子  题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 160 难度:6级算法题  收藏  关注 有一个h行w列的棋盘,里面有一些格子是不 ...

  8. 【51NOD】1486 大大走格子

    [算法]动态规划+组合数学 [题意]有一个h行w列的棋盘,定义一些格子为不能走的黑点,现在要求从左上角走到右下角的方案数. [题解] 大概能考虑到离散化黑点后,中间的空格子直接用组合数计算. 然后解决 ...

  9. 51nod 1486

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1486 1486 大大走格子 题目来源: CodeForces 基准时间限 ...

随机推荐

  1. python 归并排序

    def merge_sort(alist): if len(alist) <= 1: return alist # 二分分解 num = len(alist)/2 left = merge_so ...

  2. Scrum 冲刺 第四日

    目录 要求 项目链接 燃尽图 问题 今日任务 明日计划 成员贡献量 小组会议 要求 各个成员今日完成的任务(如果完成的任务为开发或测试任务,需给出对应的Github代码签入记录截图:如果完成的任务为调 ...

  3. 201421123042 《Java程序设计》第10周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结异常相关内容. 2. 书面作业 本次PTA作业题集异常 1. 常用异常 结合题集题目7-1回答 1.1 自己以前编写的代码中经常出现 ...

  4. Flask jinja2 全局函数,宏

    内置全局函数 dict()函数,方便生成字典型变量 {% set user = dict(name='Mike',age=15) %} <p>{{ user | tojson | safe ...

  5. bzoj千题计划274:bzoj3779: 重组病毒

    http://www.lydsy.com/JudgeOnline/problem.php?id=3779 有一棵树,初始每个节点有不同的颜色 操作1:根节点到x的路径上的点 染上一种没有出现过的颜色 ...

  6. PHP环境手动搭建wamp-----Apache+MySQL+PHP

    首先下载分别下载Apache+MySQL+PHP. 然后分别解压到文件夹中. 1.安装Apache 1)检查80端口是否占用 说明:apache软件占用80软件,在计算机中一个端口只能被一个软件占用 ...

  7. Spark学习笔记之RDD中的Transformation和Action函数

    总算可以开始写第一篇技术博客了,就从学习Spark开始吧.之前阅读了很多关于Spark的文章,对Spark的工作机制及编程模型有了一定了解,下面把Spark中对RDD的常用操作函数做一下总结,以pys ...

  8. Angular 学习笔记 ( CDK - Accessibility )

    @angular/ckd 是 ng 对于 ui 组建的基础架构. 是由 material 团队开发与维护的, 之所以会有 cdk 看样子是因为在开发 material 的时候随便抽象一个层次出来给大家 ...

  9. Spring中获取request的几种方法,及其线程安全性分析

    前言 本文将介绍在Spring MVC开发的web系统中,获取request对象的几种方法,并讨论其线程安全性. 原创不易,如果觉得文章对你有帮助,欢迎点赞.评论.文章有疏漏之处,欢迎批评指正. 欢迎 ...

  10. 重启Apache报错

    重启Apache报错,如图所示:server: /etc/httpd/modules/mod_jk.so: wrong ELF class: ELFCLASS64 原因:mod_jd的版本有问题 解决 ...