[JSOI2008]球形空间产生器
Description
有一个球形空间产生器能够在n维空间中产生一个坚硬的球体。现在,你被困在了这个n维球体中,你只知道球
面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器。
Input
第一行是一个整数n(1<=N=10)。接下来的n+1行,每行有n个实数,表示球面上一点的n维坐标。每一个实数精确到小数点
后6位,且其绝对值都不超过20000。
Output
有且只有一行,依次给出球心的n维坐标(n个实数),两个实数之间用一个空格隔开。每个实数精确到小数点
后3位。数据保证有解。你的答案必须和标准输出一模一样才能够得分。
Sample Input
0.0 0.0
-1.0 1.0
1.0 0.0
Sample Output
HINT
提示:给出两个定义:1、 球心:到球面上任意一点距离都相等的点。2、 距离:设两个n为空间上的点A, B
的坐标为(a1, a2, …, an), (b1, b2, …, bn),则AB的距离定义为:dist = sqrt( (a1-b1)^2 + (a2-b2)^2 +
… + (an-bn)^2 )
列出距离式子(设球心坐标x,球上2个点p,q):
$\sum_{i}^{n}(p_i-x_i)^2=r^2$
$\sum_{i}^{n}(q_i-x_i)^2=r^2$
两式相减,就可以得到一个一次线性方程
构造出n个方程,高斯消元
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
double a[][],p[][];
int n;
void guass()
{int i,j,k,now;
for (i=;i<=n;i++)
{
now=i;
for (j=i+;j<=n;j++)
if (fabs(a[now][i])<fabs(a[j][i]))
now=j;
for (j=i;j<=n+;j++)
swap(a[i][j],a[now][j]);
for (j=i+;j<=n+;j++)
a[i][j]/=a[i][i];
a[i][i]=;
for (j=i+;j<=n;j++)
{
for (k=i+;k<=n+;k++)
{
a[j][k]-=a[j][i]*a[i][k];
}
a[j][i]=;
}
}
for (i=n;i>=;i--)
{
for (j=i+;j<=n;j++)
{
a[i][n+]-=a[i][j]*a[j][n+];
a[i][j]=;
}
a[i][n+]/=a[i][i];
a[i][i]=;
}
}
int main()
{int i,j;
cin>>n;
for (i=;i<=n+;i++)
{
for (j=;j<=n;j++)
scanf("%lf",&p[i][j]);
}
for (i=;i<=n+;i++)
{
for (j=;j<=n;j++)
{
a[i-][j]=p[i][j]-p[i-][j];
a[i-][n+]+=p[i][j]*p[i][j]-p[i-][j]*p[i-][j];
}
a[i-][n+]/=2.0;
}
guass();
printf("%.3lf",a[][n+]);
for (i=;i<=n;i++)
printf(" %.3lf",a[i][n+]);
}
[JSOI2008]球形空间产生器的更多相关文章
- 【bzoj1013】[JSOI2008]球形空间产生器sphere
1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 4530 Solved: 2364[Subm ...
- BZOJ 1013: [JSOI2008]球形空间产生器sphere 高斯消元
1013: [JSOI2008]球形空间产生器sphere Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/Judg ...
- 【BZOJ】1013: [JSOI2008]球形空间产生器sphere
[BZOJ]1013: [JSOI2008]球形空间产生器sphere 题意:给n+1个n维的点的坐标,要你求出一个到这n+1个点距离相等的点的坐标: 思路:高斯消元即第i个点和第i+1个点处理出一个 ...
- bzoj 1013 [JSOI2008]球形空间产生器sphere(高斯消元)
1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3584 Solved: 1863[Subm ...
- 线性代数(高斯消元):JSOI2008 球形空间产生器sphere
JSOI2008 球形空间产生器sphere [题目描述] 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确 ...
- BZOJ 1013 [JSOI2008]球形空间产生器sphere
1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3074 Solved: 1614[Subm ...
- BZOJ1013 [JSOI2008]球形空间产生器sphere(高斯消元)
1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 4846 Solved: 2525[Subm ...
- [JSOI2008]球形空间产生器 (高斯消元)
[JSOI2008]球形空间产生器 \(solution:\) 非常明显的一道高斯消元.给了你n+1个球上的位置,我们知道球上任何一点到球心的距离是相等,所以我们 可以利用这一个性质.我们用n+1个球 ...
- bzoj千题计划104:bzoj1013: [JSOI2008]球形空间产生器sphere
http://www.lydsy.com/JudgeOnline/problem.php?id=1013 设球心(x1,x2,x3……) 已知点的坐标为t[i][j] 那么 对于每个i满足 Σ (t[ ...
- BZOJ1013 JSOI2008 球形空间产生器sphere 【高斯消元】
BZOJ1013 JSOI2008 球形空间产生器sphere Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点 ...
随机推荐
- tomcat超时、内存不足
1.Tomcat 启动超过45s启动失败,报超时错误 可以Eclipse 下Tomcat中扩大tomcat启动时间,默认为45 ,修改为245 2 . tomcat启动内存不足 Run - Run C ...
- 第2次作业:stream案例分析
摘要:本次随笔是对stream软件进行一次案例分析,以个人观点分析stream为什么成功. 一.介绍产品相关信息 1.我选择的商品是stream 2.选择该产品的主要原因准要是因为自己本身喜欢玩这个平 ...
- 2017-2018-1 Java演绎法 第四五周 作业
团队任务:撰写<需求规格说明书> 团队组长:袁逸灏 本次编辑:刘伟康 流程.分工.比例 (比例按照任务的费时.难度和完成情况估算) 流程 确定任务 -→ 分配任务 -→ 各组员完成各自任务 ...
- C语言---字符数组
一.PTA实验作业 题目1:7-2 统计一行文本的单词个数 1. 本题PTA提交列表 2. 设计思路 定义循环变量i,j定义不为空格的字符数count,定义单词数number,i,j,count,nu ...
- SQL函数返回表的示例-Z
create function [dbo].[GetOperateCustGroup] ( ), ) ) returns @TempTable table (MaxPrice float,MinPri ...
- MySql使用存储过程实现事务的提交或者回滚
DELIMITER $$ DROP PROCEDURE IF EXISTS test_sp1 $$ CREATE PROCEDURE test_sp1( ) BEGIN ; ; START TRANS ...
- 201421123042 《Java程序设计》第3周学习总结
#Week03-面向对象入门 1. 本周学习总结 1.1写出你认为本周学习中比较重要的知识点关键词,如类.对象.封装等 本周学习关键词:类,对象,封装,关键词:final,this,statis. 1 ...
- 一个毕生难忘的BUG
记得以前接手过一个Java项目,服务器程序,直接让Jar在linux上跑的那种, 这个项目由两个web服务组成,也就是两条Java进程,主进程 xxx.jar,辅助进程 xxx_helper.jar. ...
- STM32读取温湿度传感器DHT11和DHT21(AM2301)系列问题
1.DHT11和DHT21传感器 这两种传感器都是奥松公司的产品,具体的传感器说明书在其官网上有(www.aosong.com). DHT11 数字温湿度传感器是一款含有已校准数字信号输出的温湿度复合 ...
- 算法题丨4Sum
描述 Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = ...